The CCQM, What It Does, What It Has Achieved and Why It is Important to You

> Robert Kaarls CCQM President Emeritus Immediate Past Secretary CIPM Honorary Member of the CIPM

Symposium on Chemistry and the International System of Weights and Measures Symposium at ACS National Meeting, Boston, MA, August 19, 2015

METPO

- Bureau
- International des
 - Poids et
 - A Mesures

Contents

- Global need for comparable measurement results through traceability
- Metrological traceability and the Traceability Chain
- The role and deliverables of the NMIs and DIs
- The global metrological infrastructure and the CCQM
- What are the problems and what goes wrong
- How do the NMIs/DIs and the CCQM work
- CIPM Mutual Recognition Arrangement CIPM MRA, Quality Chain
- Joint Committee on Traceability in Laboratory Medicine JCTLM

- Need for <u>globally comparable and accepted measurement results</u> for sustainable competitiveness, innovation, better quality of life
- Global trade in commodities ~18 trillon US\$ (2012) (WTO Statistics 2013)
 - 80% affected by standards/norms and regulation
 - compliance costs ~10% of production costs
- Industrial, energy, food (>1,2 trillion USD), pharmaceuticals (>461 billion USD), cosmetics, and all other products from everywhere
- Global spread of diseases and global environmental and climate issues
- Global security, forensics and anti doping
- "soft/perceptive" metrology (smell, taste, blends, color, glance, form,etc., physiological measurements
- Requires comparable, traceable measurements

Demanding Metrological Traceability

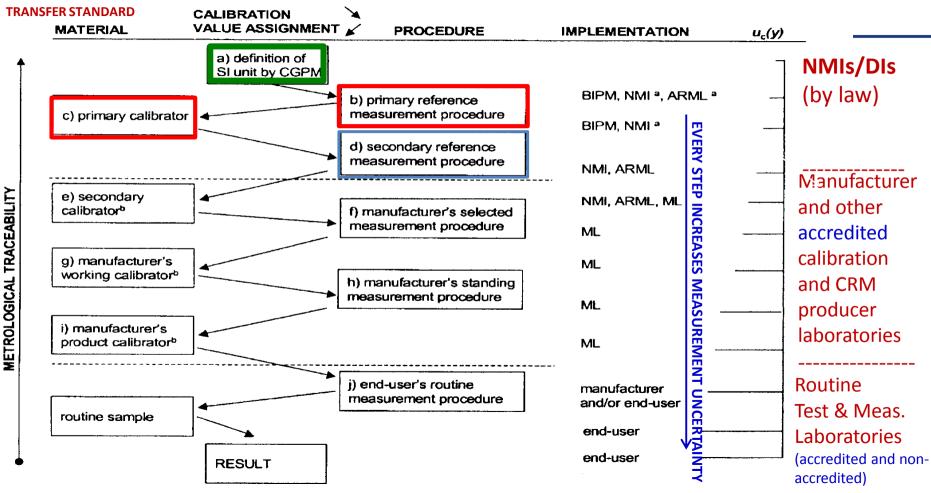
- Legislators, Regulators (fair trade, carbon trading, food, health, pollution, police)
- Joint Committee on Traceability in Laboratory Medicine JCTLM (BIPM, IFCC, ILAC, WHO, in-vitro diagnostics industry)
- Codex Alimentarius Commission, HACCP, micro-biology
- Animal health, plant protection, bio-diversity
- WMO Global Atmospheric Watch, climate change
- Pharmacopeia (USP, EDQM, JP, pharmaceutical industry)
- Sports and World Anti Doping Agency WADA
- Forensics authorities and security authorities
- VAMAS, materials metrology
- And many others, such as of course industry, traders, laboratories

Addressing metrological traceability and measurement uncertainty CIPM and BIPM cooperate with all organizations through workshops and in the CIPM Consultative Committees, such as the CCQM with all its Working Groups

"Once measured, everywhere accepted" requires **Comparability through Traceability**

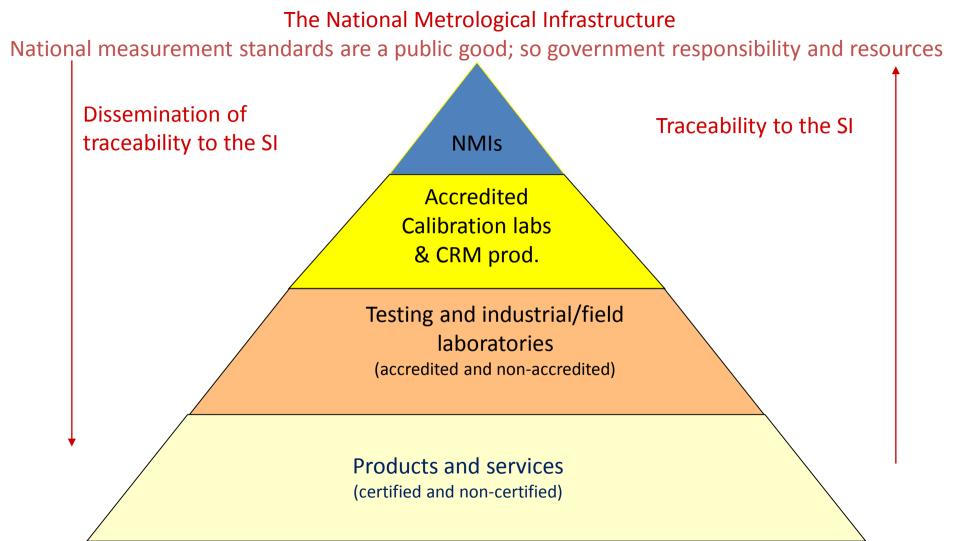
Metrological traceability

Property of a measurement result whereby the result can be related to a reference through an unbroken chain of calibrations, each contributing to the measurement uncertainty JCGM 200:2008 (VIM 3)


Traceability to the SI, or if not (yet) possible to another internationally agreed reference (e.g. hardness, pH, WHO International Units)

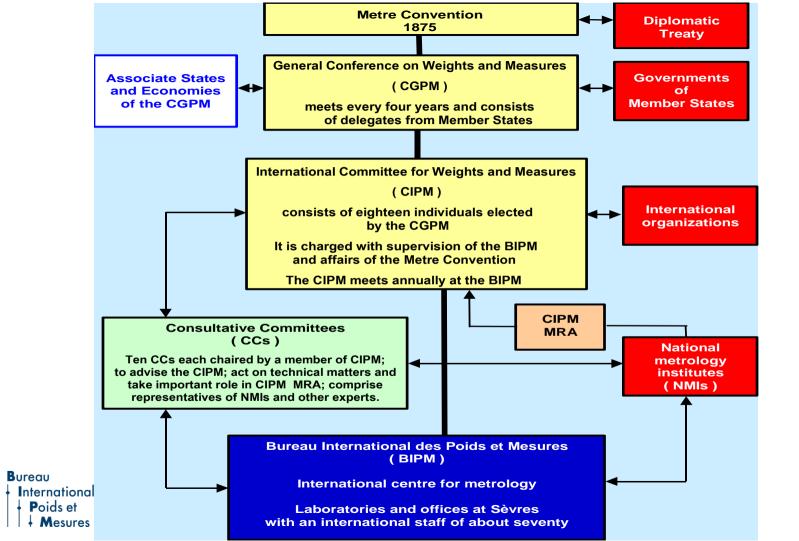
Traceability chain

(by courtesy of ISO (ISO 17511) and BIPM)



Traceability to the SI ((bio-)chemical measurements) Traceability to the mole or other SI units

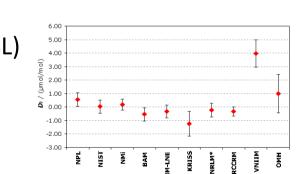
- Amount of substance
- Amount fraction
- Amount concentration
- Mass concentration
- Amount content
- Mass fraction
- Surface analysis

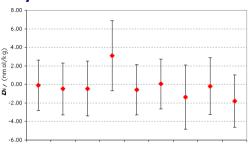

- : mol
- : mol/mol
- : mol/m³
- : kg/m³
- : mol/kg
- : kg/kg
- :nm
- (or expressed in multiples or sub-multiples)

In cases of traceability to e.g. WHO International Standards (CRMs) and Units; no traceability to the SI, and no long term stable references

Services to be delivered by National Metrology Institutes and other Designated Institutes

- **Calibration** of (transfer) measurement standards and capability to assign values to physical, bio and chemical reference samples
- **Certified Reference Materials** (production, certification)
- Reference value assignment of Proficiency Testing samples (own PT schemes and/or third party PT schemes)
- Validation of measurement methods/procedures
- Delivering traceability to industry and ILAC Arrangement accredited calibration and testing laboratories, CRM producers and PT providers
- Delivering traceability to sector specific reference laboratories (clinical and food reference laboratories, WMO reference laboratories, a.o.)




CCQM – the Beginning

- A Working Group on Metrology in Chemistry was established by the CIPM at its 80th meeting in September 1991
 - Study I, metals in solution (coordinated by NIST)
 - lead (and cadmium) in natural water
 - 1st study 1992-1994 not satisfactory
 - 2nd study 1995-1998 acceptable results
 - Study II, measurement of gases (coordinated by VSL)
 - Carbondioxide in nitrogen

Poids et

In 1993 CIPM decided to endorse the Working Group's recommendation that a permanent Consultative Committee for Amount of Substance be formed

How to establish global comparability through traceability ?

The 1st meeting of the CCQM in 1995

Still many scientists outside the CCQM doubting whether it will ever be possible to establish traceability in chemistry

CCQM – Metrology in Chemistry and Biology

- President: W. May (Past President: R. Kaarls, 1993-2013)
- Executive Secretary: R. Wielgosz (BIPM)
- ~ 45 Member and Observer Organizations
- \sim 250 experts active in the CCQM WGs
- Some WGs meeting twice per year

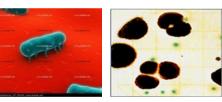
CCQM Working Groups

- Chairpersons/Strategic Planning
- Key Comparisons and CMC Quality
- Organic Analysis
- Inorganic Analysis
- Gas Analysis
- Electro-chemical Analysis
- Surface Analysis

NIST	W. May
GLHK	W.M.(Della) Sin
NMIA	L. Mackay
LGC	M. Sargent
KRISS	J.S. Kim
SMU	M. Mariassy
BAM	W. Unđểr

CCQM – Metrology in Chemistry and Biology

CCQM Working Groups (continued)


- Nucleic Acids
- Proteins
- Cells

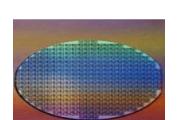
CCQM ad hoc Steering Group

- Microbiology
- Identity WG
- Quantity WG

CCQM ad hoc Working Group

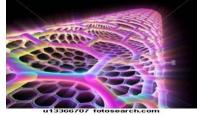
- Redefinition SI
- CIPM MRA and CMC database review

NISTJ. MorrowNIST/IRMMJ. Morrow/H. SchimmelNMIA/NIMD. Clarke/Wang Jing



CCQM Metrology in (Bio-)Chemistry

- High purity Chemicals (inorganic and organic compounds, metals, isotopics, other)
- Inorganic solutions (elemental, anionic, other)
- Organic solutions (PAHs, PCBs, pesticides, other)
- Gases (high purity, environmental, fuel, forensic, medical, other)
- Water (fresh water, contaminated water, sea water, other)
- pH
- Electrolytic conductivity
- Metals and Metal alloys (ferrous metals, non-ferrous metals, precious metals, other)
- Advanced materials (semiconductors, superconductors, polymers and plastics, ceramics, other)



CCQM Metrology in (Bio-)Chemistry

- Biological fluids and materials (blood serum, renal fluids, hair, tissues, bone, botanical materials, other)
- Food (nutrional constituents, contaminants, GMOs, other)
- Fuels (coal and coke, petroleum products, bio-mass, other)
- Sediments, Soils, Ores and Particulates (sediments, soils, ores, particulates, other)
- Other Materials (cements, paints, textiles, glasses, thin films, coatings, insulating materials, rubber, adhesives, other)
- Surfaces, films and engineered nanomaterials (inorganic, organic, biomaterials, other)
- Micro-biological pathogens (bacteria, virusses, fungi, yeast, mould)

Priority areas in the USA (NIST)

- •Energy (biofuels, hydrogen fuel, solar, wind) green, renewable
- •Environment and climate change (WMO GAW)long term future
- •Healthcare better healthcare, cost reduction
 - Diagnostics (EU IVD directive driven)
 - Therapeutic (WHO)
 - Pharmaceuticals (USP, a.o.)

Homeland security/forensics safer society

Priority areas in the EU (EURAMET)

- European Metrology Research Programme (FP 7 and art.185) and EMPIR on Innovation and Research (EU Horizon 2020)
- •Health care (Virtual human modelling system, Reference measurements and materials (JCILIVI), Diagnostic and Therapeutic instrumentation (imaging, microscopy, NMR, ultrasound) better health care, innovative products
- Energy (New and renewable energy resources, Smart energy networks) green and renewable energy
- Environment and climate change (Detecting change and monitoring climate, Carbon dioxide sequestration) a cleaner and long term future
- Fundamental metrology (SI, Nanotechnology, Security related metrology) fundamental measurement standards, and safe nanotechnology and a safer society

- CCQM stakeholder and expert cooperation
- > BIPM (scientific and industrial metrology), OIML (legal metrology)
- > MoU with WHO, WMO, IAEA, ILAC, JCTLM (IFCC and ILAC)
- Codex Alimentarius Commission/IAM, IUPAC, WADA,
- VAMAS, Pharmacopeia/USP, IAFSI/ENFSI, ISO, a.o.

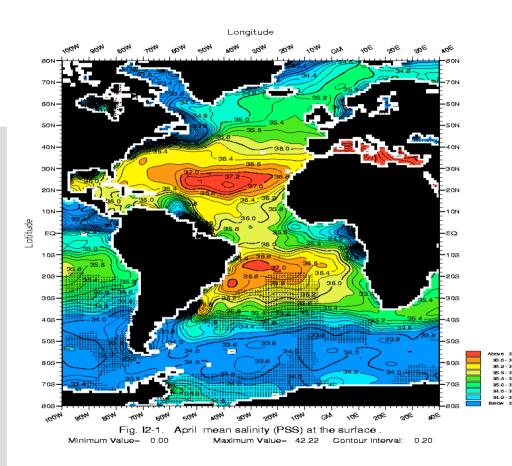
- Regulators, Industrial Societies, Sector Specific Reference Laboratories, EQAS, PT providers, a.o.
- Addressing the "Grand Challenges" in society and economy (EU, APEC, USA, Japan, a.o. with focus areas on food safety, health care, environmental control/climate change, energy, advanced and nano materials, and security/forensics)

CCQM Meeting

Paris, April 4th., 2008

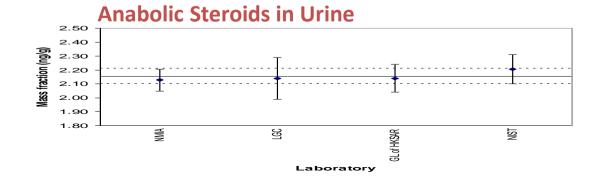
Ministério do Desenvolvimento Indústria e Comércio Exterior

Parameters for Bioethanol to beincluded in MRCDensity


As presented in the White Paper

Equally for Bio Diesel – FAME, many organic components

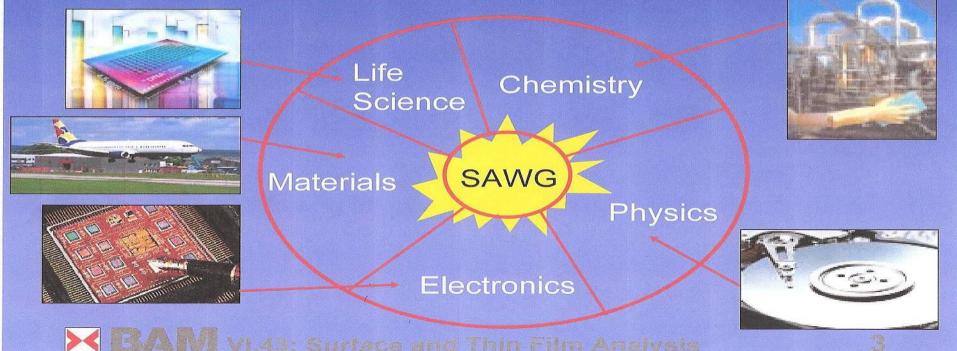
Sulfate content Sulfur content **Copper content** Iron content Sodium content Ethanol content Acidity Phosphorus content pHe Chloride content Water content


Ocean salinity

- Salinity is one of the most important input quantity of climate models and of Tsunami warning systems.
- Standards are maintained and disseminated on behalf of International Association for the Physical Sciences of the Oceans (IAPSO) by OSIL.

Forensics

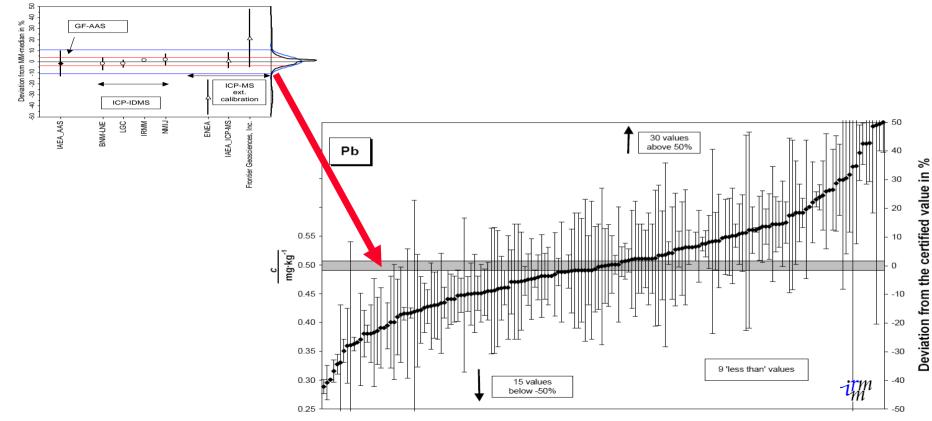
- Crime Scene Investigations
- Standards for Drunk Driving Testing
- Drugs of Abuse in Urine and Hair
- Sports Medicine
- DNA-based Human Identification
- Explosives Detection
- Estimating Drug use within the Population



Very good results of a comparison of 4 NMIs/DIs, which deliver traceability, carried out in cooperation with the WADA 22

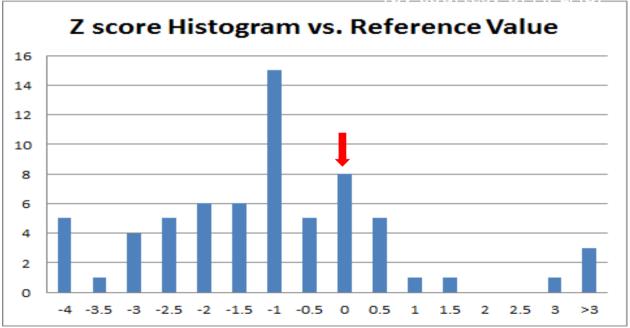
Surface and Micro/NanoAnalysis (SNMA) at the Interface

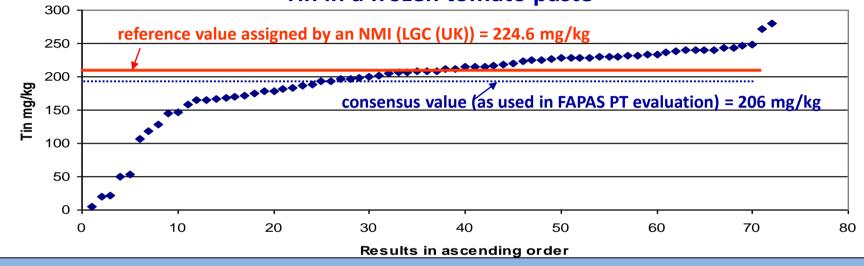
SMNA resides in a number of NMIs in one or more different Divisions, depending on local histories – so the light may shine in different directions in the NMIs.


Why need of reliable micro-biological measurements?

- > Already for many years requested by a number of NMIs
- > 2013 world export volume of food products > 1200 billion USD
- > Estimated that 20% to 30% of total world food production is lost due to microbial spoilage
- > USA CDC statistics on food-borne illnesses indicate:
 - ▶ 48 million illnesses per year due to food-borne pathogens, of which
 - 128 000 hospitalizations and 3000 deaths
 - It means every year 1 in 6 Americans are affected
- Food poisening in the EU (EFSA 2009 figures)

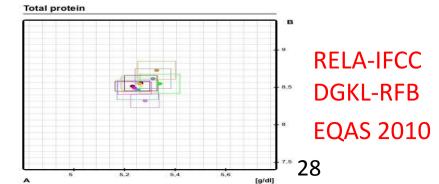
	EU 2009	USA 2011 estimated
Salmonella	108 614	1 027 561
Campylobacter	198 252	845 024
Listeria	1 645	255 death
VTEC E.coli	3 573	2 100 hospitalized
(sources CDC statistics a	nd Campden BRI)	

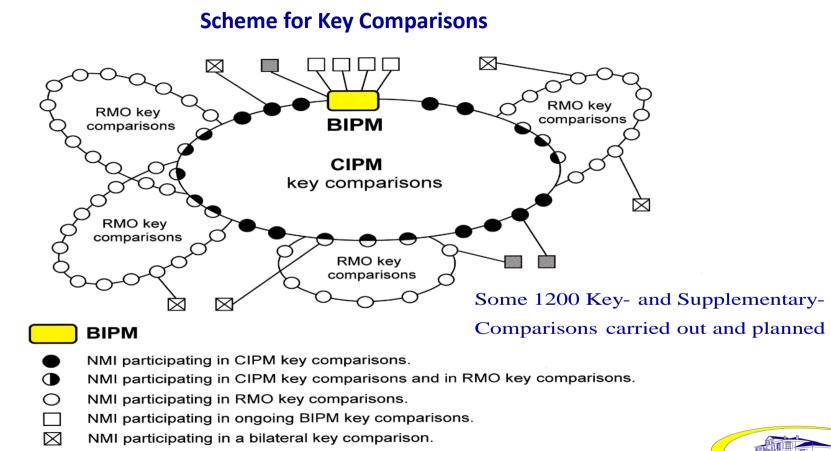

CCQM-P39 and IMEP-20: Pb in tuna fish


Results from all participants

Reference Value or Consensus Value

- A good example of the outcome.
- Apparent bias was found in recent APLAC Accreditation PT program.
- 'PAH in Sediment'
- Corrective actions needed
- Demonstrates the advantage of an assigned reference value instead of a consensus value


Food Analysis Performance Assessment Scheme (FAPAS®) Proficiency Test 0754 Results (>70 food testing laboratories) Tin in a frozen tomato paste


	Effect on Rating	Number of Labs.	Percent	
Changes in ratings of laboratories PT performance	'Acceptable' >> 'Unacceptable'	17	37	
if use reference value instead of consensus value	'Unacceptable' >> 'Acceptable'	9	20	
	No change to rating	20	43	

Current major measurement problems in (bio-)chemistry

- Impossibility to address all possible analyte-matrix combinations
- Lack of pure, primary calibrators/reference materials Quantification and Identification !
- Measurand not understood (insufficient knowledge of what the measurand, intended to be measured, should be, and not sure what is really measured)
- Measurand is method/procedure defined (need global harmonization of procedure)
- "reference" methods/procedures are not metrologically sound
- Insufficient global harmonization of measurement methods (e.g. moisture in grains and cereals; in cooperation with OIML, ISO, Codex Alimentarius, legislators)
- Measurement uncertainy
- No calibration chain/hierarchy
- Lack of CRMs
- Commutability problems

CIPM, CCQM, BIPM, RMOs and bilateral comparisons in the scope of the CIPM MRA

International organization signatory to MRA.

WGs Conducting Key Comparisons that Interrogate Measurement Competencies that Cover a Broad Range of Application Areas ... including the following examples:

Health

- clinical diagnostic markers
- electrolytes (Na, K, Ca), Pb in blood
- anabolic steroids in urine

Food

- Pesticides, antibiotics hormones
- vitamins and minerals
- drinking water
- ethanol in "Adult Beverages"

Environment

- air, soil, sediments
- biological tissues
- waste water

Bureau International des Poids et

Advanced Materials

• semiconductors, alloys, polymers

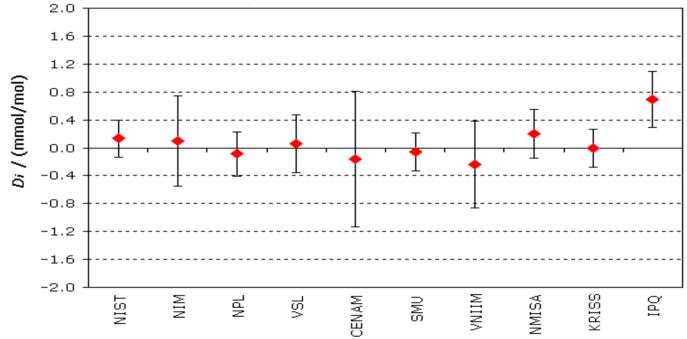
General Studies

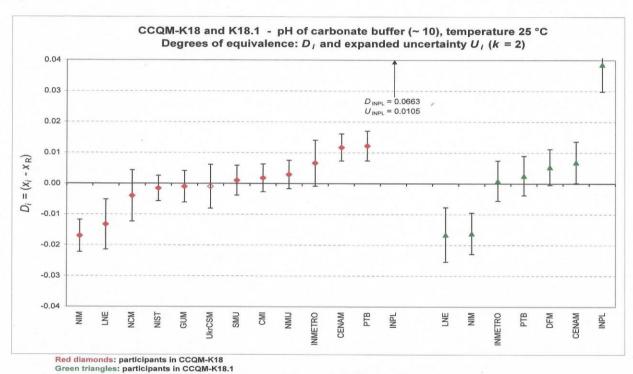
- pH and electrolytic conductivity
- purity assessment
- calibration solutions mixtures

Forensics

- drugs, breathalyzer (ethanol-in-air)
- explosive residues
- DNA profiling

Commodities

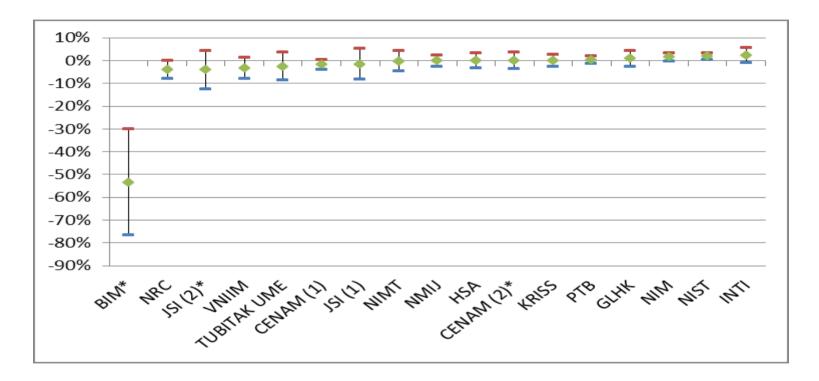

- emissions trading, sulfur in fossil fuels
- natural gas
- cement

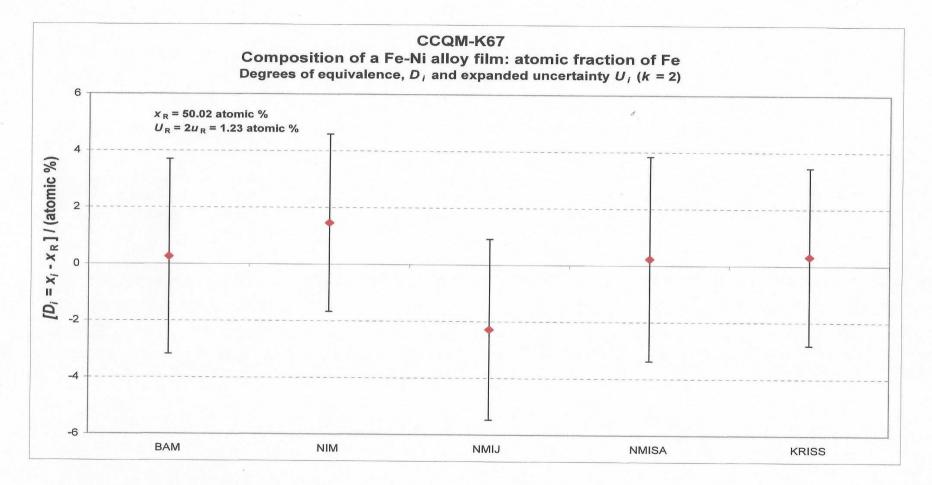

Biotechnology

- DNA quantification
- protein quantitation
- •GMO

Amount of Substance fraction of CO₂ in Stack gas

Degrees of equivalence, offset D_i and expanded uncertainty (k=2) U_i expressed in mmol/mol

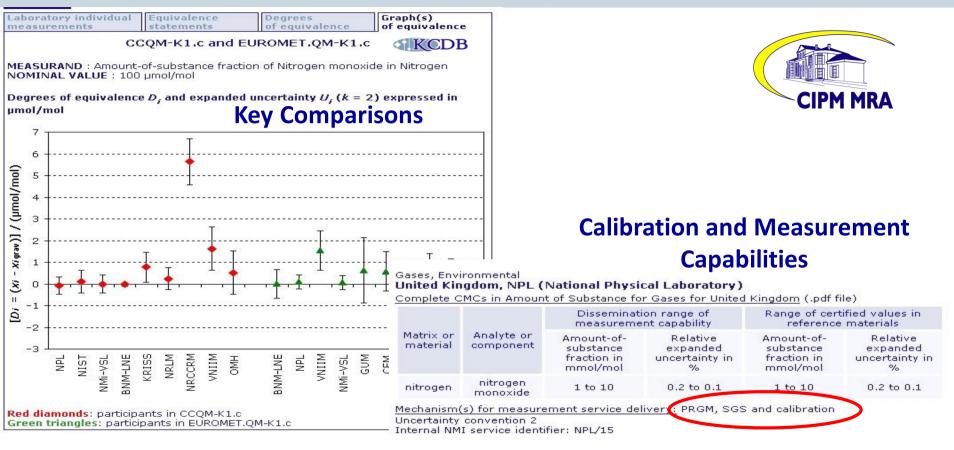



Open symbols represent values for laboratories in Associate States and Economies of the CGPM

The BIPM key comparison database, September 2008

5/5

Ca in Herba Ecliptae



CIPM Mutual Recognition Arrangement – CIPM MRA

- Covering all physical, chemical and biological measurement areas
- In total > 24 000 CMCs published (March 2015), based on on-site peer reviewed capabilities and competences (ISO/IEC 17025 and ISO Guide 34)
- ~ 5800 (bio-)chemical Calibration and Measurement Capabilities
- From ~ 249 NMIs/DIs in 93 countries/economies, and IAEA, EU JRC (IRMM and ISPRA), WMO (3 reference labs) and ESA-ESTEC.
- Chemical and biological comparisons
 - 187 CCQM Key Comparisons
 - 178 CCQM Pilot Study comparisons

- CIPM MRA
- 25 additional comparisons, including Microbial Identity and Cell Counting
- 47 RMO Key- and Supplementary Comparisons
 www.bipm.org

BIPM and the Mutual Recognition Arrangement

Mechanisms for measurement service delivery: CRMs

Biological fluids and materials, Blood serum United States, NIST (National Institute of Standards and Technology)

Complete CMCs in Amount of Substance for Biological fluids and materials for United States

(.pdf file)					
	Disseminatio measuremen		Range of certified values in reference materials		
Matrix or material	Analyte or component	Amount-of- substance concentration in mmol/l	Relative expanded uncertainty in %	Amount-of- substance concentration in mmol/l	Relative expanded uncertainty in %
human serum	cholesterol	3 to 10	0.2 to 1.5	3.453 to 8.61	0.20 to 1.3

<u>Mechanism(s) for measurement service delivery:</u> SRM 1589a, SRM 1951a, SRM 1952a, SRM 909b, SRM 968c

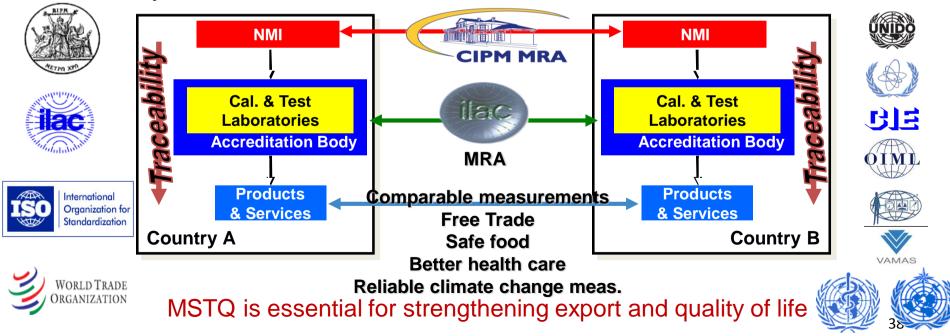
Uncertainty convention 1. The expanded uncertainty for certified values in reference materials is given at a 95% level of confidence, but the coverage factor is not explicitly equal to 2 Internal NMI service identifier: NIST/8392169

High purity chemicals, Organic compounds United States, NIST (National Institute of Standards and Technology)

Complete CMCs in Amount of Substance for High purity chemicals for United States (.pdf file)

	Dissemination range of measurement capability		Range of certified values in reference materials		
Matrix or material	Analyte or component	Mass fraction in %	Relative expanded uncertainty in %	Mass fraction in %	Absolute expanded uncertainty in %
high purity cholesterol	cholesterol	95 to 100	0.2 to 0.1	99.8	0.1

Mechanism(s) for measurement service delivery: SRM 911c


Approved on 24 June 2008.

Uncertainty convention 2 Internal NMI service identifier: NIST/8392005

Quality Chain, the importance of reliable measurements

A sound <u>measurement system</u> is fundamental in fields of science, production of goods and services, health, commerce, communications,...It creates the <u>framework</u> in which suppliers of products and services can demonstrate <u>compliance with specifications</u> within an internationally standardized system.

Joint Committee on Traceability in Laboratory Medicine - JCTLM

Principal promotors

- CIPM/BIPM
- IFCC
- ILAC

Supported by

- WHO
- Regulators (FDA, EC, Japan)
- CRM producers (NIST, IRMM, a.o.)
- Reference laboratories (CDC, DGKS, etc.)
- PT and QA organisations (CAP, EQA, etc)
- Written Standards (NCCLS, JCCLS, ISO)
- IVD industry (ADVAMED, EDMA, JARC)

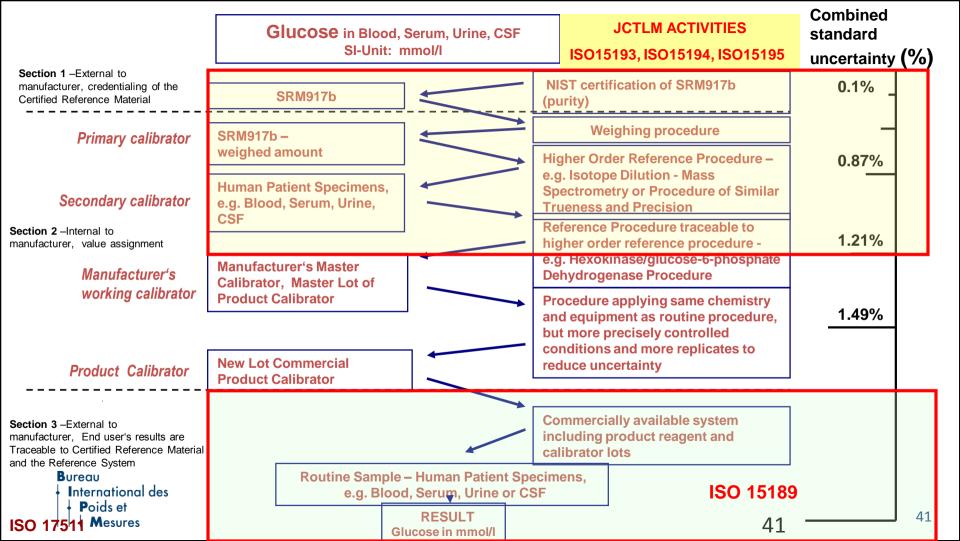
JCTLM triggered by EC IVD Directive

- * Implementation of
 - EC-IVD Directive (98/79/EC)
 - prEN ISO 17511
- * EC-IVD Directive Annex 1
 - Essential requirements A 3

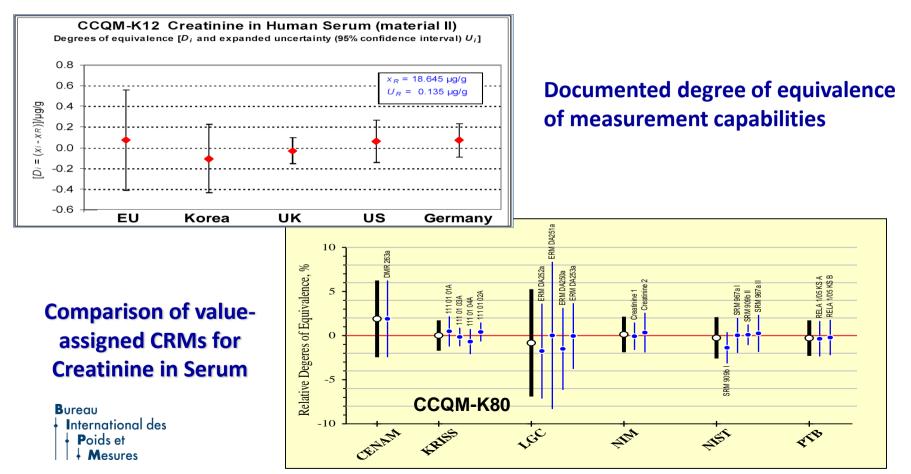
'...The traceability of values assigned to calibrators
and/or control materials must be assured through
available reference measurement
procedures and/or
available reference materials of a
higher order.'

JCTLM WG 1 Measurand/Analyte-Based Review Teams Co-chaired: K. Phinney (NIST) an H. Schimmel (IRMM)

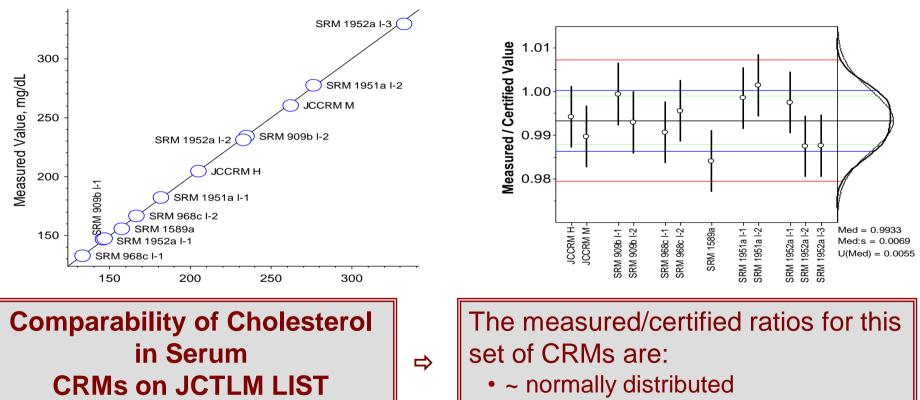
Blood cell counting Blood Groupings Coagulation Factors Drugs **Electrolytes/Blood Gases** Enzymes Metabolites/Substrates **Microbial Serology Non-electrolyte Metals Non-Peptide Hormones Nucleic Acids Proteins** Vitamins


Quality System

Bureau International des Poids et Mesures Lili Wang, NIST, United States Susan Thorpe, NIBSC, United Kingdom Elaine Gray, NIBSC, United Kingdom Andre Henrion, PTB, Germany Brigitte Toussaint, IRMM, European Union Mauro Panteghini, University of Milan, Italy Xu Bei, NIM, China Claude Giroud, Bio-Rad, Lee Yu, NIST, United States Heinz Schimmel, IRMM, European Union Helen Parkes, LGC, United Kingdom David Bunk, NIST, United States **Donald Wiebe, Univ. of Wisconsin, United States**


Robert Wielgosz, **BIPM**

Review Teams established with worldwide representation from Laboratory Accreditation Organizations, National Metrology Institutes, Professional Societies, and IVD Industry in order to facilitate a fair and transparent review process.


40

Comparison of Capabilities and Certified Reference Materials for Creatinine in Human Serum

Comparison of CRMs for Cholesterol

with a standard deviation of ~0.7%

JCTLM Database of Reference Materials for IVD measurements

JCTLM Database Results of the search for higher-order reference materials

Your search criteriat Higher-order missiono materials; Analyte: choinstorol; Analyte category: -; Netrix cabeconvi

Results of the scardh

ICTLM Database

calagory: -

Results of the search.

Phone: +05 10 5422 1011

Phone: +1 101 975 6776

Fate: 11 301 948 3730

Pess 186 10 6171 1149

chainsteroi in photesterol crystalline material

cholestern) in cholestarol crystalline material

National Institute of Metrology (NTM), China

Analyte certified/assigned value 99.7 %

Expanded uncertainty 0.1% (tevel of possidence 55 %)

Your search criteria produced 6 summary results

Select one or several higher-projer interence meterial summary descriptions amongst the following list and click on Week to access more in onnation.

Select all items from the list

Sort by : (@ Anal)	ce C Matro/Material	Organization
--------------------	---------------------	--------------

Result of the search: list of higher-order reference materials

Name of the reference solutional GBW092030, cholestoral

Traceability SI CBM listing List.T This (Catified) Reference Material has been reviewed for compliance with 190

National Institute of Standards and Technology (NIST), United States

Name of the reference material SRM 311c, Cholostorol Quantity Mess Pection

15194:2003 but not been reviewed against ISO 15194:2009

Analytic carbfied/assigned value 0.992 g/g Esponded uncertainty 0.4 % relative (level of condition co 65 %) Traceability S7 CINH Histing List [This (Cortified) Reference Material has been reviewed for compliance with ISD 15104:2003 but not been reviewed against ISO 15194:2005

Quantity Plass fraction

Reference(s) on commutability Not applicable: a high purity material used as a primary calibrator for blaber order reference

methode

Select	Analyte	Analyte category	Matrix/Material	Organization
V	cholesterol	motabolites and substrates	cholesterol crystalline material	NDM
N.	cholesterul	metabolites and substrates	cholesteroi crystalkoe metorial	NIST
1	dialesterol	metshottics and substrates	numan serum	NIST
2	cholestard	metabolitins and substrates	Isiman serum	ReCCS
12	chalester of	metabolites and substrates	cholesterol crystalling material	NMF3
Z	total cholestero!	motabolites and substrates	frozen human serum	11569.
	ct all means from the	Det.		View

Voor seands ontonia: Higher-order referance materials; Availyte: cholestonol; Analyte category: -; Vetrix

Resails consective Testre ac.co.

Webs betres id annual said 20 mil

Enablis seminitedinist.gov

Web: Hilp://etwo.akt.ogv/stm

The (Certified)

Reference

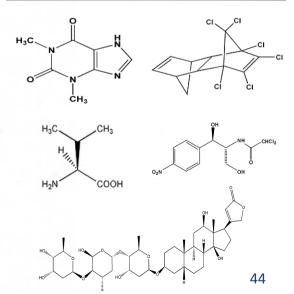
listed in the

reviewed for

compliance

with IEO 13194:2009

unines otherwise


stated.

Materiais

database Pressed second

ICTUM

www.bipm.org

cholalizard in human caning National Institute of Standards and Technology (NIST), United States Email: ermolizektist.gov Phone: +1 201 975 6726

Reference Materials					ence Materials
Information about Material				Contact Information	
			Estimated * Availability	- Producer - Country - Website - Email Address	
		Material Name	(months, as of		Commutability Study Information and/or
Analyte	Matrix	and/or ID #	Jan 2004)	- Fax Number	Citations
cholesterol	cholesterol	GBW09203b	60	NRCCRM, China Tel: 086-10-64221811 Fax: 086-10-64213149 Email: crmservice@nrccrm.com.cn	Primary calibrator for higher order reference methods
cholesterol	cholesterol	SRM 911b	21	NIST, USA	Primary calibrator for higher order reference methods
cholesterol	human serum	JCCRM 211	12	HECTEF, Japan http://www.in8.co.jp/hectef/starte.htm Tel: 81-44-813-0055 Fax: 81-44-813-0224	
cholesterol	human serum (frozen)	SRM 1951b	60	Email:srminfo@nist.gov Tel:(301)975-6776 Fax: (301)948-3730	Material prepared following NCCLS Documer C37-A "Preparation and Validation of Commutable Frozen Human Serum Pools as Secondary Reference Materials for Cholesterol Measurement Procedures; Approved Guideline" Method used for certification: Anal Chem 61, 1718-1723 (1989)
cholesterol	human serum (Iyophilized)	SRM 1952a	60	NIST, USA http://ts.nist.gov/ts/htdocs/230/232/232.htm Email:srminfo@nist.gov Tel:(301)975-6776 Fax: (301)948-3730	
cholesterol	human serum (Iyophilized)	SRM 968c	38	NIST , USA http://ts.nist.gov/ts/htdocs/230/232/232.htm Email:srminfo@nist.gov Tel:(301)975-6776 Fax: (301)948-3730	
Behotesterol	human serum (Iyophilized) I des	SRM909b		NIST,USA http://ts.nist.gov/ts/htdocs/230/232/232.htm Email:srminfo@nist.gov Tel:(301)975-6776 Fax: (301)948-3730	

	Reference Measurement Procedure				
Procedure Name and/or ID #	Analyte Name	Applicable Matrices	Measurement Principle	Reference Procedure Citation(s) or Document(s)	Reference Procedure Comparability Assessment Studies
NIST definitive method for serum cholesterol	cholesterol	lyophilized, fresh, or frozen serum	ID/GC/MS		CCQM-K6; http://kcdb.bipm.org/appendixB/appbr esults/ccqm-k6/ccqm- k6_final_report.pdf; Clin Chem 36, 370-375 (1990)
U. Of Ghent reference method for cholesterol	cholesterol	lyphilized, fresh, or frozen serum	ID/GC/MS	Clin Chem 39,1001-6 (1993) [=part II of Clin Chem 39,993-1000 (1993)]; Eur J Clin Chem Clin Biochem 34, 853-60 (1996); Clin Chem 42, 531-5 (1996)	EUROMET 563
DGKC definitive Method for Serum Cholesterol	cholesterol	lyophilized, fresh, or frozen human serum or plasma	ID/GC/MS	Siekmann et al., Z. anal. Chem. 279, 145-146 (1976)	PTB - National Key Comparison for Accredtation
CDCAbell-Kendall method for cholesterol	cholesterol	lyophillized, fresh or frozen human serum	Spectrophotometry	Cooper, GR, et al, Clin Chem 32: 921- 929, 1986	Clin Chem 36, 370-375 (1990)

UGent, Belgium	
Phone: +32 (0)9 264 81 04	Contact person: Prof. Dr. L. Thienpont
Fax: +32 (0)9 264 81 98	Email: linda.thienpont@Ugent.be
Analyte	glucose
Material or matrix	blood serum, blood plasma
Quantity	Amount-of-substance concentration
Service measurement range	1 mmol/L to 25 mmol/L
Expanded uncertainty (level of confidence 95%)	1.5 % The expanded uncertainty is calculated for measurement protocol n = 6
Interlaboratory comparison results	RELA - IFCC External Quality assessment scheme for Reference Laboratories in Laboratory Medicine at http://www.dgkl-rfb.de:81/index.shtml
Measurement principle	Isotope dilution gas chromatography mass spectrometry (ID/GC/MS)
JCTLM reference measurement method/procedure	University of Ghent reference method for glucose

CCQM charged with establishing the system for global comparability of bio and chemical measurement results through traceability to the SI, or if not (yet) possible, to other internationally agreed references, by that being the basis for international recognition and acceptance of **your** bio and chemical measurement and test results, taking away Technical Barriers to Trade and contributing to a sustainable economy and competitiveness, innovation and a better environment and quality of life

Thank you!

Bureau

International des

Poids et

Mesures

Questions?

www.bipm.org