
Writing Applications for Uniform Operation
on a Mainframe or PC:

A Metric Conversion Program

Charles A. Schulz
Lockheed Missiles 8 Space Company, Inc.

Dept. 19-74, Bldg. 102
1111 Lockheed Way

Sunnyvale, California 94089.3504, USA

ABSTRACT

The metric system of measurement is the primary standard
in all countries except the USA and two others. Use of the
metric system is becoming more important to the L’SA for
trade and commerce in the world economy. A metric con-
version program was developed to convert 350 measure-
ment units between inch-pound (or USA customary) and
metric systems for engineering design and documentation.
The program follows the primary national metric standard
with its conversion factors and special rules for arithmetic,
rounding, accuracy, formatting, and terminology. It was
first developed in APL on a \‘&I CJIS mainframe system,
but subsequent demand warranted a PC version. The
program has been presented at national metric meetings
and is briefly described here.

The portability of APL2 under Y\I C\IS and PC DOS
was exploited in moving the mainframe program to the PC,
maintaining much of the code in identical form, thus giving
advantages in testing, verification, and user experience.
Differences between the environments fell mainly in the
user and file interface areas, which led to a matched set of
cover functions for system dependent operations. These
functions and differences between the two systems are
described for file operations, pop-up windows, printing,
stack and host system commands.

The capability and portability of APL enabled this applica-
tion to become the first internally written example at this
company of IBM’s new user interface guidelines working
on both a central mainframe and a PC.

Permission to copy without fee all or part of this material 18 granted provided that

the copies am not made or distributed for direct commercial advantage, the ACM

copyright notice and the title cd the publication and its date appear, and notice

is given that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish. mqu1res a fee and/or specific

psrmisolon.
l 1eeOACM 089791.371~x/9O/0008/0348...$1.50

INTRODUCTION

The Metric System

The metric system of measurement is the primary standard
in ail countries except the USA, Burma, and Liberia. Even
in the USA, industries such as medical, computer, and
automobile, among others, already make significant use of
metrics.

International standardization of measurement began in
1875 with the establishment by 17 nations of the Interna-
tional Bureau of Weights and Measures in France near
Paris. This bureau is controlled by the General Conference
on Weights and Measures that meets every few years in
Paris with representatives from member nations. The inter-
nationally standard measurement system now in use, main-
tained by the Bureau, is the International System of Units
(SI) t which incorporates the metric system.

The metric system has several advantages long recognized
by scientific and technical circles. Use of the decimal
system for scaling (multiples and submultiples) of units sim-
plifies arithmetic with measurements. The coherence of
units is based on unique units for each physical quantity
(length, mass, time, etc.), clarifying relationships between
fundamental and derived units. The use of unique units
produces unique symbols that prevent confusions such as
use of “b” for bar (pressure) and barn (cross section).
Also, use of the predominant international system permits
easier participation in international cooperation and trade.

Due to historically large trade interests with England in
inch-pound products, the USA retained the inch-pound
system while other countries implemented metrics. For this
reason the inch-pound system of units is sometimes called
the *English” system. Inertia and nationalism have con-
tinued the delay in adoption of metrics by much of USA
industry and commerce until recently. Also, USA reliance
on the inch-pound system of measurement has caused the
confusion between weight and mass to persist from educa-
tion into industry, whereas that problem has disappeared in
other countries. It is interesting to note, however, that since
1893 the USA customary foot and pound have actually

Writing Applications for Uniform Operation . . . 348 APL90

been defined in terms of the international metre 2 and kilo-
gram.

Metric Need in the USA

Use of SI is becoming more important to the USA for
trade and commerce in the world economy. This fact has
been recognized in recent national developments. The
Department of Commerce funds an Oflice of Metric pro-
grams, and specific government department and agency
policies have recently been appearing. For example, a
policy which signaled the importance of metrics to the
aerospace,defense industry was the 1987 Strategic Defense
Initiative Offrice (SDIO) directive to use metrics in all new
designs, or to use dual indication with metric units first, fol-
lowed by USA customary units in parentheses3. The
importance of metrics was finally recognized in legislative
requirements for all government departments and agencies
to use the metric systema. This legislation makes it the
“policy of the United States to designate the metric system
of measurement as the preferred system of weights and
measures for United States trade and commerce.” It
requires government departments and agencies to use
metrics in procurements, grants, and other business-related
activities by the end of fiscal year 1992 to the extent that it
is economically feasible.

Metric Need at LMSC

SI requirements are already showing up in Lockheed blis-
siles & Space Company (L>lSC) contracts. A major con-
sideration in the SD10 policy was interchangeability and
interoperability with allies’ systems. Sl’s advantages may
also apply to L>ISC’s work on non-defense aerospace pro-
jects such as the Space Station Freedom, for which interna-
tional participation by Europe, Japan, and Canada is
already planned.

METRIC CONVERSION PROGRAM

Purpose

To address L>lSC’s growing needs for conversion of
existing designs and comparison of USA customary and SI
unit measurements, the COhlET (Computerized METrica-
tion) program was developed. The program uses standard
conversion factors and special rules for arithmetic,
rounding, accuracy, formatting (style), and terminology to
convert 350 measurement units between USA customary
and SI systems for engineering design and documentation.
These factors and rules follow the primary national metric
standard 5 and an aerospace standard for preferred units6

COMET’s primary intention is to provide existing inch-
pound engineering designs a standard metric soft conver-
sion, where equivalent metric units do not change the
physical configuration beyond original tolerances. This
conversion allows existing inch-pound tooling to be used
during production from metric converted engineering
designs. While it is important to fall within the original tol-
erances when calculating a soR conversion, it is just as

important to not exaggerate the required accuracy in order
to avoid resulting increased production costs.

CO&lET’s secondary intentions are to assist metric hard
conversion or design through testing of tolerances, and con-
version verification and education through testing of con-
versions. Metric hard conversion changes the existing
design to fit metric tooling so that the physical configura-
tion can change beyond original tolerances. The program
also converts from SI to USA customary units for verifica-
tion of USA customary unit to SI conversions and special
situations such as using metric tooling for production of
inch-pound designs.

The use of COMET should preclude common mistakes
such as incorrect application of significant digits rules, for-
getting to square or cube the prefix on area or volume
units, confusing use of the kilogram standard factors when
other scalings of grams are needed, or incorrect use of
standard symbols and abbreviations.

LMSC currently uses COXIET to standardize metric docu-
ments such as design handbook sections, design standards,
and material and process specifications. These uses have
in turn revealed technical and user requirements that have
been used to refine the program.

LWSC is considering interfacing COblET to CADA\l, the
computer aided design and manufacturing system used
extensively at LMSC, to provide rounding when converting
inch-pound designs. CADAY handles hard metric designs
or direct metric conversion from inch designs, but it does
not provide necessary rounding features. There are thou-
sands of existing inch-pound unit designs, stored in data
bases from which components and modifications are often
reused for new contracts, that could be applied on metric
contracts requiring soft conversion.

CO\lET is available as a public utility to all 6,000 users of
the central LX4C VM!CMS system. A PC version has
also been developed. Versions are being considered as util-
ities for other computing environments.

Presentations

Although COMET was first envisioned as a simple straight-
forward application for a common need, unexpected com-
plexities were encountered that made it a more diflicult
application. Work in progress has been discussed at con-
ferences and in newsletters to compare with similar efforts
at other companies.

COMET tias presented at the U.S. Metric Association
1988 annual conference, the first forum after the 1988 legis-
lation to discuss government responsibilities for imple-
menting metric provisions of the legislation. The
conference included attendees from government, industry,
and academia, including members of the American Society
for Testing and Materials (ASTM) Committee E-43 on
Metric Practice, which is responsible for the primary
national standard. As a result of this presentation, LMSC
was invited to participate on the E-43 committee. CO.MET
work was described further in a manufacturing newsletter7,
and a metric newsletters. In 1989, the PC version of

APL QUOTE QUAD Charles A. Schulz

COhIET was demonstrated and discussed at the annual
meeting of the full E-43 committee. Refinements to the
program are continuing as a result of these presentations.

Usage Features

COMET is basically an input to output converter. The
program handles single values, toleranced values, and
ranges of values with several rounding methods and
percent error limiting. It uses rules of significant digits for
calculations, as specified in the ASTM national standard,
rather than simple computer or calculator arithmetic.
Results are handled up to 16 digits - more than a calcu-
lator, important for some conversions. 16 SI prefixes can
be used to modify scaling of conversions. Results are
direct conversions and recommended significant digit
roundings within standard error percentages. Input is
accepted in decimal, exponential (scientific), or fractional
form. Output includes formulas, long names, accepted
abbreviations (SI symbols), and optional comments.

The usage goal is to provide a converted recommended
number without much effort, and to provide extra informa-
tion about that conversion for reference. This involves
some basic features, perhaps easily foreseen, including:

l Optional sort so the original order of inputs can be
preserved to follow the appearance of those measure-
ments on engineering drawings

l Labeling, displaying, printing, or saving of outputs

l Executing a file of inputs as a procedure batch mode
for large amounts or repetitive sets of data.

COYlET uses a series of pop-up window menus, prompts,
and displays to provide instructions and request conversion
selections, input, and output options. This user interface
attempts to follo\v guidelines from IB\I’s Systems Applica-
tions ArchitectureT” (NAT”) Common Lser Access (CCA)
concept 9 to maintain usability and familiarity in programs
between mainframes and workstations. CUA is a style of
user interface that lB.\-1 is using in its new products and
applications. It consists of many guidelines based on past
experience and thorough consideration of computer ter-
minal and workstation features. General flavors are the
use of overlapping windows to illustrate the paths through
a program, and well-defined actions from standard kinds of
windows.

In the case of COMET, CUA is implemented in both the
C.\lS and DOS environments at the non-programmable
terminal level. Graphical features, icons, mouse handling,
and multi-tasking windowing, as discussed in CUA for pro-
grammable workstations, are not handled. These features
are aimed more towards the OS 2T*1 environment. Actions
in COMET consist of entering answers and inputs with the
Enter key and using programmable function (PF or F)
keys shown on the windows. The user dialog consists of
primary windows with pop-up windows within them.
Pop-up windows display actions that must be completed
before returning to underlaying windows. Progress mes-

sages are displayed at the bottom of the screen or in
pop-up displays.

A few more minor style choices were made. An action bar
with pull down menus was not needed for the small
number of screens in this application. Screen color rec-
ommendations were mostly followed, and differences in
recommendations for the V.M terminals and PC displays
did take advantage of differences in hardware color
between them. The “Cancel” function, recommended for
all screens as canceling the current action, is labeled as
“Return” for compatibility with many current mainframe
applications.

Standard actions are assigned to standard keys as shown in
Table 1.

All screens have the same general layout from top to
bottom:

l Mndow title

l Scroll information showing if more display is available
than will fit in the window

l Data display or instructions, selections and input fields

l Message line for progress messages or special
instructions

l Action keys.

Specific types of screens are as follows:

Single selection menus: An item is selected by entering
its number in the field next to the item numbers or by
moving the cursor next to an item number and using
Enter. In some cases, a default item number may be
displayed in the selection field; it must be erased before
making a selection with the cursor. Figure 1 shows a
pop-up menu for a particular input field on the under-
laying window with a selection typed in the selection
field next to the item numbers.

1fultiple selection menus: This is a variation of the
single selection menu where one or more items are
selected by typing a slash (1) next to each item.

Entry panels: Inputs are typed as instructed. A ques-
tion mark (?) typed in an input field provides a
pop-up menu of available choices for a specific input
field. The “Prompt” action key provides pop-up
menus of available choices for all fields. A sample is
shown in Figure 2.

Data displays: Data is scrolled through the window
with the action keys. Scrolling can also be performed
by modifying the starting line number in the scroll
information line. A sample is shown in Figure 3.

Pop-up messages: Progress messages may use pop-up
message displays to emphasize activity. A sample is
shown in Figure 4.

In COMET, each pop-up window overlaps the previous
window’s action keys displayed at the bottom, so that it is
clear which window is active, as shown in Figure 5. Also,
input fields on underlaying windows are reset so that tab
keys will not move to them.

Writing Applications for Uniform Operation . . . 350 APL90

Key 1 Action - Description

Enter

Fl

Select or proceed

Help

Act on information typed on the screen and proceed
through the program.

Display a pop-up menu of help sections to select and
scroll thraueh.

F3

F4

F7 and Page Cp

F8 and Page Down

F10

F12 and Esc

Exit

Prompt

UP
Down

Actions

Return

Display a pop-up menu of yes:no to exit the program.

Provide pop-up selection menus for each entry field of
possible choices.

Scroll backward 1 window.

Scroll forward 1 window.

If there is more than one possible action from a screen,
display a pop-up menu of actions for selection.

Cancels or returns from the current action window to the
previous action or display.

Table 1. Standard action keys

Stlect Conversion

befault conversion.

Category

Cate Categories of conversions are:
Conv
Pref 12 1. Acceleration
Conv 2. Angle

3. Area

Ptga 1 of 3

4. Bending moment (torque)
5. Bending moment (torque) per unit length
6. Electricity 8 magnetism
7. Energy (includes work)
8. Energy per unit artt time
9. Force

10. Force per unit length
11. Heat
12. Length

EnterFSelect choice typed or indicated by cursor.
Esc=Return Fl=Help F3=Exit F7=Up FB=Down

lnttr I

Figure 1. Single selection pop-up menu

APL QUOTE QUAD 351 Charles A. Schulz

Select Conversion

lefault conversion.

rype and enter parameters (nnu numbers or text).
rype and enter “?” to lookup one paraaeter, use F4 to lookup all.

Category length
Convcrsi on inch
Prefix l i lli
Convert (from) direction . . US

Enter Esc=Return FI=Help F3=Exit F4=Pronpt

Figure 2. Entry panel

Display

COMET PC Version 2190
ASTR E380-89a Conversion

Lines 4 to 23 of 85
6 Feb. 90, 3:12 p.m., page 1

Category: length.
Conversion: inch to millimetrc.

Formula : (in x 2.540 OOO*E-02) / lE-03 ==a mm
Factors with an asterisk (*) are exact.

Error limits: 5% for single valuer, 10% of tolerance for ranges.

X error
from

Rounded/converted convert
Input output Rnd or Converted value Sig

in mm meth tolerance mm dig
__________---__-__-- ---------------- a--- -----w- -v--w-------- --

3 * .5 +12 8 HI 3.6000 X 12.70000000 1S
76 A 0.2625 X 76.20000000 1)

-12 8 HI 2.0000 x 12.70000000 1s

Entcr=Scroll to typed line nuder.
Esc=Return Fl=Help F3=Exit F7Wp FB=Donn FlO=Actions

Figure 3. Scrollable data display

Writing Applications for Uniform Operation . . . 352 APL90

Output Format Options

Length:
inch to mi llimctrc.

_ Sort
_ Lcav

Progress

Converting measurement 1 of 17...

/
Enter=Select choices with “/- typed next to them.
Esc=Return Fl=Help F3=Exi t

Figure 3. Pop-up message overlapping multiple selection menu

3-4.23 1.
2.
3.

It Per
dig

--- En

L Ente
Enter= Esc:
Esc=Re

Display
Lines 20 to 34 of 34

12.345 max 313.56 B HI 0,0010 x 313.56300000 5

1.234e Output Disposition

12345. Output options:
7

Exit

Exit to DOS:

1 1. Yes
2. No

Entcr=Smleet choice typed or indicmtrd by cursor.
Esc=Return

Figure 5. Action keys only in active window

APL QUOTE QUAD 353 Charles A. Schulz

Program Design

Although CO.ClET started out as a simple program, unex-
pected difiiculties were encountered that made it a more
dillicult application continuing off and on over a couple of
years. Significant digits arithmetic alone was complex.
This involved determining significant digits in input meas-
urements, following rules for arithmetic with significant
digits in conversion and rounding calculations, and dis-
playing significant digits properly in output. Occasional
edge condition examples of incorrect roundings produced
the need to pre-round numbers in order to precisely follow
the rounding rules. Various error checking conditions were
added such as checking for input of a temperature that
would convert to a negative Kelvin temperature. SI termi-
nology and style rules complicated proper handling of pre-
fixes in compound units and capitalization, and in number
formatting.

Unexpected requirements appeared from actual usage. For
example, input error checking for zero value tolerances had
to be changed when engineers encountered real situations
using a bilateral tolerance, one of which was indeed zero,
e.g.:

1.25+.05-o

Finally, providing a modern user interface without any pre-
written SAA CUA tools or utilities turned out to be more
than trivial.

CO\lET was first developed in VS APL on a VJI C\lS
mainframe system. \vhile the choice of APL originally
seemed suited to this application for handling arithmetic
simply. it eventually was quite necessary in actually under-
standing the arithmetic, which was of course essential to
programming it correctly. APL’s ability to handle char-
acter data as easily as numeric data also suited it to manip-
ulation of the character information, conversion data
tables, and user interface features such as menus.

After an early version of the mainframe program was in
use, demand warranted a PC version for parts of LMSC
where the central V&l system was not used. About this
time lB\l made APL2 PC available - an attractive
product for this situation due to its compatibility with main-
frame APL (APL2) under VM CMS and IBM’s permis-
sion to package programs for distribution without licensing
obligation.

PORTING TO THE PC

Transfer Files

Some extra work was necessary without a copy of APL2
on the mainframe with which APL2, PC was easily compat-
ible, and to which VS APL code could be migrated auto-
matically with)MCOPY. IBY provided a printout of the
INX and OUTX programs from APL2;VM’s 2
TRANSFER workspace that were typed in manually to VS
APL. These read and write VS APL code in transfer form
files readable by APLZ’s 1 IN and 1 OUT.

Writing Applications for Uniform Operation . . . 354 APL90

Transfer files produced by OUTX in VS APL and down-
loaded in binary form to the PC are translated and read by
APL2:PC’s 1 IN just as those produced by)OUT in
APL2:‘370 (mainframe for VM, CXlS or MVS,TSO) would
be.

Transfer files produced by)OUT in APLZiPC can be
uploaded in binary form to be read by APL2/370’s 1 IN.
Transferring code from APL2:PC back to VS APL had
some extra difficulties:

l APL2.:370 from Release 3 performs the appropriate
translation from ASCII to EBCDIC character repre-
sentation. The character translation for VS APL was
figured out by trial and error in passing a variable of
q AV back and forth between VS APL and APL2;PC.

l The APL2)OUT command might use either migration
or extended transfer forms for objects. The IN2
program typed in for COMET was unable to read a
transfer file created with)OUT by APL2;PC, but was
able to read a transfer file created with the OUT func-
tion from the APL2, PC F I LE workspace, which uses
only the extended transfer form via OTF.

l INX in VS APL also seemed to require that the
transfer file be uploaded with a CR. LF option to
retain record breaks which APL2.370 would otherwise
recognize.

l And, of course, APL2 features not compatible with VS
APL had to be avoided.

Isolating System Dependencies

From this point, the challenge in moving the mainframe
program to the PC was to preserve as much as possible of
the program between environments, in order to maintain
the integrity of testing and verification, as well as the users’
experience, for both versions. Since the VS APL code was
upward compatible with APL2 PC with very few
exceptions, the differences would fall in system dependent
areas such as files, screens, and operating system com-
mands. By appropriately isolating these types of oper-
ations, a parallel set of cover functions could be used so
that the calculation and reporting parts of the code would
remain identical. In a few cases dual environment func-
tions were appropriate, such as character case translation.

Unfortunately, the first attempt at replacing the obvious
system dependent functions showed how poorly these had
been isolated from the other parts of the program code or
were dependent upon special features of the environment.
It took two weeks to get the APL2;PC version to success-
fully limp through. More optimistically, this exercise identi-
fied areas in the code where improvement would make
future maintenance and enhancements much easier. These
improvements could also open the way for consideration of
porting to yet other systems, since the main calculation
code would already be independent of two operating
systems.

Areas of the code were rewritten in bits and pieces as the
application progressed, and have now resulted in a nice set
of functions for system dependencies that can fit in an

application workspace on either the mainframe or the PC.
These functions deal almost exclusively with the differences
in auxiliary processors (APs) between the mainframe and
PC APL%

APL Versions

APL2 has recently become available on LMSC’s V,M,‘CMS
mainframe. But initial work was done with VS APL
Release 4 for VM ‘C.MS and APL2. PC Version 1 (and later
Version 1.01). Extra care had to be taken on the PC side
to use APL2 style code only in the PC specific functions
and to continue using V’S APL style in parts of the code
that also run on the mainframe. This was difficult and
confusing at times because it was tempting to use new
APL2 features. But new APL2 features really fell into just
a few areas to think twice about before using:

l Nested arrays in variables and as arguments to func-
tions

l Sew primitives related to nested arrays, such as
enclose, disclose, depth

l Sew primitives match, each, find, dyadic grade, index

l Sew system functions and variables for event handling

l Comments at the end of code lines.

For compatibility of VS APL style with APL2 PC code,
there ivere also only a few problems. The genera1 trap for
any ne\v user of APL2 is, of course, the possibility of acci-
dentally using vector notation by leaving out a primitive,
such as ravel, during edit of a function: rather than the
editing error being identified with a SYNTAX ERROR, the
line of code actually executes and produces a nested result
which then leads to other troubles in following lines. Other
diflerences that arose included:

l \‘S APL’s evaluation of brackets allows selection from
a constant in vector notation, whereas APL2 requires
parenthesis around vector constants

l DAV uses different character orderings in VS APL,
APL2 PC, and APL2 370

l Monadic format of rank 2 or greater arrays includes a
column of leading blanks in VS APL, but not in
APLZ.

In the monadic format case, and in a few functions that
handle dual environment operations, the environment
checking function shoun in Figure 6 was useful. Specif-
ically for the format case, the APL function was used with
format as a phrase:

(O,l=APL)CI

For the differences between VS APL and APLZ, the IBM
migration guide 10 was quite useful. Interestingly, in this
manual, execute alternative OEA is noted as a feature new
with APLZ, although it is available in VS APL and was
used in COMET. Apparently it is an undocumented or
test feature of VS APL.

Files

Both VS APL and APL2 for Vll use AP 110 for sequen-
tial or direct access to CMS files of fixed or variable length
records. APL2,PC uses AP 210 for sequential or direct
access to DOS files of fixed or variable length records.
Both APs use a control and a data shared variable. The
principal differences between the two APs are the use of the
shared variables and the availability of file size information.

In AP 110, after a file is opened, the control variable con-
tains the most recent return code, the record position of the
read pointer, the record position of the write pointer, and
the blocking factor for multiple fixed length records.
Records are written by setting the data variable, and read
by referencing the data variable. The control variable
pointers are updated automatically by reads and writes,
and can be altered to control which and how many records
are accessed. The file size, in terms of records, is deter-
mined by inspecting the control variable write pointer at file
open time.

In AP 210, after a file is opened, the control variable con-
tains the most recent return code and is used to set numeric
operation codes and optional record numbers and sizes.
Records are written by setting the data variable, then
setting the control variable with a write operation code.
Records are read by setting the control variable with a read
operation code, then referencing the data variable. The AP
maintains pointers internally for sequential accesses, but
these are not available to the user. The file size, in terms of
bytes, is shown in the control variable at file open time.

These differences and the capabilities of the APs have
several effects on the PC side:

l To determine the number of records in a file, you must
know the record length for fixed length records or read
the entire file to count CR;LF sequences for variable
length records.

l Direct access to variable length records is much less
efficient than sequential access because the file is
scanned from the beginning in search of the requested
record by CR;LF sequences.

l A copy of the last record accessed is kept in the data
variable until it is reset, i.e. in the active workspace.

v
103 R+APL
Cl3 A Returns 1, 2. or 3 for VSAPL, APL2/PC. or APL2/VM.
C21 A (In order of COflET development.)
c33 RWAVC39 98 1303%‘a’

V

Figure 6. Environment checking function

APL QUOTE QUAD 355 Charles A. Schulz

l In contrast to AP 110, the internal write pointer
always starts at the beginning of the lile rather than at
the end.

l The size of fixed length records cannot be determined
by reading one, because the length defaults to 128
unless specified.

l Blocked multiple record access is not directly available.
Severai fixed length records can be read by a multi-
plied record size, but this requires a record number
which is also figured by the multiplied record size.

l Fixed length record files are not as easily transferred to
the mainframe because there are no CR LFs to indi-
cate record breaks.

TO handle these effects, accommodations were made in use
of files:

l Where scrolling display of file contents was expected,
files were written with fixed length records, using a
known length, for more efficient read access.

l All read and write functions immediately reset the data
variable with a null value to release workspace taken
by occasionally large file records.

l The first sequential write to a file would use 32767, the
largest record number possible, to force the pointer to
the end.

l Blocked read and write were simulated by multiple
accesses for variable length and fixed length records.

l M’here fixed length record files were to be made avail-
able for transfer to the mainframe, they were re-written
to variable length format. This avoids the need for a

FILECAPLCLOSE Closes file number opened by FILECAPLOPEN.

FILECAPLOPEN Opens/creates file for read or sequential write of APL objects.
Identifies file ID uith a file number for the shared variables.

FILECAPLREAD Reads records from file number opened by FILECAPLOPEN, null at end.
Can take an optional record number to change read pointer.

FILECAPLWRITE Writes record sequentially to file number opened by FILECAPLOPEN.

FILECLOSE Closes file number opened by FILEOPEN.

FILEMAr Returns a file as a matrix.

FILEOPEN Opens/creates file for read/urite , uith optional blocking factor.
Identifies file ID with a file nueber for the shered variables.
Blocking rprcified on neu file creates for fixed length records.

FILEREAD

FILESIZE

FILEWRITE

Reads records froa file nutier opened by FILEOPEN, null 8t l d.
If blocking used in FILEOPEN then returns utrix block, else 1 record.
Can teke optional record nutir from tiich to start ruding.

Returns nuder of records in l file, assuming fixed length for-t.

Writes record(s) sequentially to file tir opened by FILEOPEN.
Records are rank s 2; may have -re rows then the blocking factor.

NEXTFILE Returns next suffixed file naw not currently in use.

Figure 7. File functions

utility on the mainframe side to break the file into
proper size records.

The common denominator file operations used by COMET
and adjusted for the AP differences are described in
Figure 7. The APL2:VM and APL2, PC versions of these
functions handle files with file ID numbers and create num-
bered sets of shared variables. In the case of AP 210, a
numbered variable is maintained with the shared variables
to keep track of records and blocking.

Screens

Enough code had to be changed in order to separate
system dependencies that there was the chance of trying out
the new SAA CUA guidelines. Cse of WA would take
advantage of wider experience in user interface consider-
ations and consistency between non-programmable (main-
frame) terminal and workstation (PC) techniques. “Trying
out” in this case meant attempting to follow them without
any previously developed utilities that implemented the
guidelines.

VS APL and APL2 for VM use AP 126 for management
of full-screen panels. AP 126 provides access to several
hundred routines from the Graphical Data Display
Manager (GDD.W”‘) product and a few service requests
for dealing with GDD11. GDDM includes calls for
graphic and full-screen character field services.

APL2 PC uses AP 124 for management of full-screen
panels. This is similar to the original AP 124 provided
with VS APL before GDDM was available. It handles
full-screen character lield services but no graphics.

Writing Applications for Uniform Operation . . . 356 APL90

Both APs use a control and a data shared variable and
deal with full-screen services in terms of rectangular lields
on the screen described by numeric field attribute matrices.
The principal differences between the two APs’ full-screen
services are the use of shared variables, identification of
fields, and handling of overlapping windows.

show new contents and attributes from overlaying
fields.

Underlaying fields cannot be re-used simply by
removing overlaying fields with reformat to 0 requests.
Latest display and input.‘output attributes remain on
the screen.

In AP 126 the control variable is used to make GDDM
and AP 126 requests as numeric call codes, and to report
return codes and numeric parameters for the service
requests. The data variable is used to pass character
parameters and data between GDD\l and the workspace.
The return codes in the control variable also indicate if
character data is returned in the data variable. The sepa-
ration of numeric and character parameters between
control and data variables predates the availability of
mixed type arrays in APL2. Fields are identified by user
specified numbers. Sew fields are added to a screen by a
reformat operation with a new field number. Overlapping
of fields is handled by GDD\l parritions, which permit
definition of new fields within rectangular sub-portions of
the main screen, using separate format matrices.

Underlaying input fields cannot be re-used for input
simply by reformatting them with their original attri-
butes and overlaying non-input ftelds with OS. A
format screen request or new overlaying input field
reformat is needed.

Individual field description attributes can be inspected
only by requesting a get of the whole format matrix.
This can affect performance in handling of large
matrices.

Management of which fields in the single format
matrix correspond to which windows must be handled
in the workspace rather than by the separate format
matrices available for each partition in GDD>f.

In AP 124 for APL2 PC, the control variable is used to
request numeric command codes and report return codes.
The data variable is used to pass numeric or character
parameters and data between the AP and the workspace.
Fields are identified by their order in the original format
matrix. Sew fields are added to a screen only by reformat-
ting fields in the original format matrix, although 0 rows
can be included in the original matrix for this purpose.
Overlapping fields are permitted field by field, where the
last definition of a location on the screen overlaps previous
definitions.

Windows must use a background field covering the
whole window to overlay previous fields.

The cursor position in a window is not remembered as
it is in AP 126 partitions.

The cursor does not show in invisible fields. Selection
fields to receive tab key movements must use visible
fields that can look invisible with blank characters in
them, but which thereby also permit visible typing.

Color displays have 255 possible combinations of fore-
ground and background colors and highlight attributes
versus 30 for AP 126.

There are a few other minor differences in operation These differences and effects were handled in several ways
between the two XPs: on the PC side:

- In AP 126, the physical display size can be queried at
any time with a GDD\I call, but in AP 124 it can be
queried only before a format matrix is in effect by que-
rying the default format matrix.

l GDDXl does not report fields modified with the read
action request. However, separate GDDXI status calls
or an AP 126 service request can accomplish this.

l Unlike GDD\l, AP 124 handles read or write with
multiple fields on a single AP call.

l A standard calling function, FSCALL, handles shared
variable sets and queries. A null option to retract the
variables was handy when the APL2, PC full-screen
editor needed to be used.

l Global variables are used to keep track of display size
and active window information handled by GDDM.

These differences and the capabilities of the APs have
several effects on the PC side:

l Underlaying window format matrices and contents that
are preserved by GDDM are kept in gtobal variables
for quick restore of underlaying windows and query of
particular field characteristics for reading and writing
contents.

l AP 124 works with one pair of shared variables at a
time and the supplied editors in the ED1 T workspace
also use AP 124. Development of AP 124 code can
be complicated by conflicts between the editor and
pending states.

l The special control information request (command 8
3) and peek,‘poke OPK were used to retain and refresh
whole screen contents without having to reconstruct
their contents and use field level writes.

l New fields must use pre-allocated format matrix field
rows. The maximum number of possible fields must
be known ahead of time.

l A small function SCRAALL was used to display all
possible field color and highlight combinations in order
to simplify making choices between them.

l Underlaying field contents and attributes, if altered
from the original format, must be saved in the work-
space for future queries, because queries will only

All screens in COMET are built dynamically for flexibility
in maintenance. However, a set of FSAA-prefixed vari-
ables, keeping full-screen attributes for standard field types
(title, instructions, choices, input, etc.), are prepared in
advance to avoid lookups at each usage.

APL QUOTE QUAD 357 Charles A. Schulz

The basic screen operation functions and variables used by
CO\,lET and adjusted for AP differences are prefixed with
FS. A few of these are particular to AP 126 or 121,
described in Figure 8. The rest, the common denominator
functions and variables with a few related functions, are
described in Figure 9.

Other screen functions that build on the FS functions for
SAA CUA operations and are identical for both APs fall
into two categories:

l SCR-prefixed functions for defining standard compo-
nents of the SAA CL'A panel types, shown in
Figure 10

l Functions for generating and operating the standard
SAA CL’A menu and data display panel types, also
shown in Figure 10.

Printing

In COylET, printing is handled by Vhl CXlS facilities for
the mainframe version and by AP 80 for the APL2. PC
version.

In V\l C\IS, the PRINT command is used lo print a file
to a printer, reading the first column as standard carriage
control characters (single space, double space, etc.).
Related commands direct the printing to particular printers.

AP 80, the printer AP, is quite simple to use. One shared
variable accepls numeric command codes or character lines
for the printer with imbedded control codes, and reports
return codes. Control codes are available lo duplicate
those to kvhich the PRIST command in VXI CMS
responds. The sole difficulty seems lo be in queqing
a-hether the printer is turned on, because the status query
code seems to hang until the user turns it on or interrupts
the program.

A single function PRINTFI LE was used in both environ-
ments for printing an existing disk file.

For AP 126 only:

FSQllOO Returns vector of screen fields l edified.

For AP 124 only:

FSAOCOLOR Sui tchs FSAb- variables to a palette of colors.

FSCOLOR Switches uindou to a palette of field colors.

FSPALETTE Variable of current color palette.

FSPALETTES Lookup table of color palette choices.

FSTERllINAL Variable of terminal size.

Figure 8. Basic fullscreen functions and variables for particular APs

Stacking Commands

VS APL and APL2 for VM and APL2.:PC all use an AP
101 for stacking commands. The WI and PC APs both
use one shared variable to accept character lines to stack
and to report return codes. The only important difference
between them is that the PC AP 101 stacks only in first-in-
first-out (FIFO) order, whereas the V&l AP can stack lines
in either FIFO or last-in-first-out (LIFO) order.

A single function STACK was used in both environments
for stacking lines.

Operating System Commands

VS APL and APL2 for V,M and APL2,‘PC all provide an
AP 100 for host operating system commands. The V.Cl
and PC APs both use a shared variable to accept character
commands and report return codes.

The PC AP has two differences worth noting:

1. DOS commands that update the file directory, such as
COPY or ERASE, will not execute if other files are
still open via the file AP 210.

2. It always reports a successful command with return
code 0, regardless of the command. While this is
probably due to lack of information from DOS, the
programmer must be careful to ensure that commands
really are executed.

Due to these difTerences, PC operating system commands
were handled in two different ways:

1. COPY and ERASE functions were written as dual envi-
ronment functions. In CMS, a CMS function was
called for these file operations. In DOS, erase was
performed via a file AP 210 request, and copy was
performed by reading and writing a new file via the
AP 210 functions shown previously in Figure 7.

2. Other PC commands such as directory creates and
queries were handled via AP 103 for BIOS DOS inter-
rupts and function calls. Some of the more useful
DOS commands are handled by functions in the pro-
vided DOSFNS workspace.

Writing Applications for Uniform Operation . . . 358 APL90

FKEYAFtlT

FSAAPREP

FSALARR

FSBDRDER

FSCALL

FSCLEAN

FSCLOSE

FSCURSOR

FSFORCE

FSFORHAT

FSGET

FSRGET

FSMWRITE

FSOPEN

FSQSIZE

FSREAD

FSREDEF

FSSAVE

FSWRITE

KEY

hESSAGE

ENTERS

FKEYS

FSAA--

FSFIELDS

FSFILL

FSHOLD

FSWINDOW

Returns formatted line of selected Enter and function keys.

Prepares FSAA-- field attribute verieblts by lookups in FSFIELDS.

Sounds the terminal l lerm et next screen uritt.

Formats end writes border on pop-up uindows.

Executes fullscreen cell end returns results fron dete variable for query
cells, from control variable for others; checks return codes.
Shares uith AP end makes initial settings if not already shercd.
Takes numeric cell codes or 10 to rrtrect short, optional date for date
variable.

tleintenence clean up of pending windows.

Closes current window, rt-establishes previous windows, if any.

Places the cursor in l field, rou end column.

Immediately displays fullscreen updates made so far.

Formats fields in numeric matrix , edding offsets for windows.

Returns contents of a field es vector or l rrey.

Reeds multiple screen fields into rows of en array.

Writes data to multiple fields, row by row.

Opens new window; overlays end saves previous window if any.

Queries row/column size for device or window.

Updates the screen display; waits for end reeds input actions with
special keys: returns key actions, cursor position, fields modified.

Redefines attributes for fields, prtpered from FSFIELDS.

Saves pending windou features in sequential number suffixed variables.

Writes data to a screen field, es delayed write.

Writes optional information or error message , waits for user l ction, reeds
action, checks specified keys , acts on stenderd keys if not specified.
Returns good F key number or 0 for Enter, cursor position, modified fields.

Writes user message 4th l ttributts for error or information.

Lookup table of Enter key definitions to show.

Lookup table of function key definitions to show.

Variables of attribute for stenderd field types.

Lookup table for stenderd field types, attributes.

Flag to fill input fields with underscores.

Flag to hold a window open for use of its rssege lihe until the next
window is reedy.

Variable of current window ID l hd position dete.

Figure 9. Basic full-screen functions and variables for AP 124 and 126

APL QUOTE QUAD 359 Charles A. Schulz

SCRAPROtlPT Produces screen format for ultiple one-line prompts or ont lKtltiplt
input line prompt.

SCRASCROLL Products fitlds for scroll information lint in:
- lint format: lints xx to yy of zz With xx input)
- page format: page x of y (output only).

SCRbSHOW Products scretn format to shou text, with optional attributes.

SCRASTANDARD Produces screen format for standard titlt, wssegc, F key lines;
optionally for heading lints, instruction lints.

SCREEN Uritt standard fitlds on special scretns: title top lint, F keys
bottom line(s), ussege line just above F key line.

SCREENAHENU Displays menu of nutbtrtd ehoicts on full scretn uith scrolling if
necessary; returns choice number input or indicated by cursor.
Uses controls for panel titlt, default choice, help name, info or error
message, PF numbers to prevent standard screen 8ctions, etc.

SCREENAHULT Displays menu of choices on full screen for wltiplr selection, returns
booltan vtctor of choicts stltcted.
Uses arguments similar to SCREENAtiENU’s.

SCROLL Displays a matrix or file ui th F keys to scroll and return.
Uses controls for panel title , action options (FlO) to l xecutt, htlp
avai lablt, etc.

Figure 10. Standard panel component and panel functions

CONCLUSIONS

The portability of APL under \‘\I CMS and PC DOS was
successfully exploited to move the CO\IET application
from VJ.1 CXIS to PC DOS. Because the initial \‘\4.CMS
version had not been originally planned for porting to the
PC, system dependent operations had not been completely
isolated. Ho\\-ever, once porting was attempted. the differ-
ences between the environments quickly identified those
spots needing revision.

There were very few differences in the operation of the
APL language itself either in APL2 or VS APL, aside from
availability of new features in APLZ. Instead, the differ-
ences fell in those areas handled by auxiliary processors,
illustrating the natural separation of language and environ-
ment for lvhich the AP concept was designed.

The ability to isolate system dependencies in functions
dealing with APs was successfully used to keep the user
interface, calculation and reporting parts of the code abso-
lutely identical between the mainframe and PC environ-
ments. This enabled consistent testing, verification, user
experience, and documentation for both versions.

The capability of APL2 provided the possibility for a single
programmer to implement IBM’s SAA CUA guidelines at
the application level. without CUA operating system facili-
ties or utilities. In fact, this capability enabled COMET to
become the first L%4SC internally written example of CUA
interface guidelines working on both a central mainframe
and a PC. This is especially significant given the erratic

availability of development time experienced with this
application. and gradual refinement over a couple of years.
APL2 code was easily re-explorable and maintainable over
long periods between work on the application.

Another advantage to the portability of APL2 was the use-
fulness of passing APL2 PC code back to the mainframe
during continuing refinement of COXIET. No change had
to be made twice, it was simply passed up or down between
versions. Also, development on the PC escaped potentially
expensive mainframe billing charges.

A measure of the success for the matched set of system
dependent functions and the CUA interface could be com-
plexity of the code. As an indication, the top CUA oper-
ating functions shown in Figure 10 are less than 100 lines
of code each. The code for files, screens, printing, stack
and host commands, with comments removed, takes about
50 kB of workspace on the PC, and 70 kB on VM. Speed
of windowing is also an important measure for these kinds
of functions. When COMET runs on a current generation
basic PC such as a 386 IB;M PS.Z@ Model 70, 16 IMHz,
no math coprocessor, VGA color display, most windows
pop up within 1-3 seconds. Considering that these func-
tions were deveioped by one programmer at the application
rather than system level, and fit comfortably in a work-
space, this performance is quite good.

Finally, COMET users have reacted positively to the user
interface and the availability of a PC version. This reflects
favorably on both the CUA concept, and the portability
and capability of APL used in this application.

Writing Applications for Uniform Operation . _ . 360 APL90

TRADEMARKS

Systems Applications Architecture, SAA, OS/2, and
GDDhI are trademarks, and PS:2 is a registered trade-
mark, of International Business %lachines Corporation.

CITED REFERENCES AND NOTES

1. “Le Systkme Internationale d’Unitds (SI).” Bureau
Internationale des Poids et Mesures (BIPAII), Paris,
France.

2. Lockheed .Clissiles & Space Company, Inc. has
adopted the Department of Defense permitted policy
exception of using the international spelling of metre
and litre with “re.”

3. “Metrics Policy for the Strategic Defense Initiative.”
IMemorandum from USAF Lieutenant General Abra-
hamson, Director, Strategic Defense Initiative Ottice,
Department of Defense, to Under Secretaries of
Defense, et al. (3 Sovember 1987).

4. “Omnibus Trade and Competitiveness Act of 1988.”
Public Law loo-576 (signed 23 August 1988 by Presi-
dent Reagan), Section 5164, “,Metric Usage.”

5. “Practice for Use of the International System of Units
(St) (the Xlodernized 1letric System),” ASIX Stan-
dard E 380. American Society for Testing and Mate-
rials, Philadelphia, Pennsylvania. This standard has
been approved for use by agencies of the Department
of Defense, and is specified by “Military Standard
Engineering Drawing Practices,” standard
DOD-STD-100, Department of Defense, Washington,
D.C.

6. “Preferred Uetric Units for Aerospace,” Sational
Aerospace Standard SAS 10001. Aerospace Indus-
tries of America, Inc., \V*ashington, D.C.

7. Richardson, H.L. “DOD Strategic Defense Initiative
Programs Go hletric; SI hletric System at LMSC.”
Issue topic “Uetric, Standardization, and Global
hlarkets: The Implications for U.S. Industry.” MAPI
Economic Report, hlanufacturer’s Alliance for Produc-
tivity and Innovation, Washington, D.C., Xo. 144
(August 1989).

8. “COmputerized XlETrication (COMET) program
eases metric conversion at Lockheed.” Metric
Reporter, American h’ational Metric Council, Wash-
ington, D.C., Vol. 17, h’o. 5 (AugustSeptember 1989).

9. System Application Architecture: Common User
Access Panel Design and User Interaction. LB&l
manual SC26-4351 (first edition December 1987).

10. APL.2 Migration Guide. IBM manual SH20-9215
(third edition November 1987).

APL QUOTE QUAD 361 Charles A. Schulz

