NBSIR 80-1967

The Calibration of Angle Blocks
by Intercomparison

Charles P. Reeve

Statistical Engineering Division
Center for Applied Mathematics
National Bureau of Standards
U.S. Department of Commerce
Washington, DC 20234

- April 1980

Final .

: U.‘S. DEPARTMENT OF COMMERCE
 NATIONAL BUREAU OF STANDARDS



NBSIR 80-1967

THE CALIBRATION OF ANGLE BLOCKS
BY INTERCOMPARISON

Charles P. Reeve

Statistical Engineering Division
Center for Applied Mathematics
National Bureau of Standards
U.S. Department of Commerce
Washington, DC 20234

April 1980

Final

U.S. DEPARTMENT OF COMMERCE, Philip M. Klutznick, Secretary

Luther H. Hodges, Jr., Deputy Secretary
Jordan J. Baruch, Assistant Secretary for Productivity, Technology. and Innovation

NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director



TABLE OF CONTENTS

1. Introduction « « « o « o o o o o o o o s o o s o o o s oo o 1
2. Measurement of FlatneSsS o« o « o o o« o o o o o o o o o s o 1
3. Measurement of SQUATENESS o ¢ o e o o o ¢ o o ¢ o o s o o » 2
4, Measurement of Angle between Faces + « ¢ o s o o o o o o o o 5
4,1 Setup Procedur@sS « « o « s s s o o s s s o o o 5 o o 5
4.2 Intercomparison Scheme =« « « o ¢ ¢ o ¢ 5 s s o ¢ o o o 5
4.3 Measurement Equatiéns T 7

4.4MethodOfSOlution @ & & o & e & o 6 8 & e 0o & 8 o e @ 9
4.530urcesofErr0r.-..-.............. 11

4.6 Statistical TeStS s e o o o o o s o ¢ » 5 o o o o o o o 12

S¢ Example « ¢ o o o s o o o s o s o o e e e s e 13
6. Conclusion « ¢ ¢ « o o & .4. e s e o o s e e o s s e o s s s 16
TableS o o o o o o o o o o o o o o o o 5 s s o s o s o o o o s 18
References o« « o« o o o o o s s s o o o o o s o o o 5 o s & & o o 19
AppendiX o o o o o o 4 o 6 s e 4 s e s 0 s o s e 6 o s e e e s e 20

Figures..-..-.....--.........3,4,6,8,14,15



l. Introduction

The calibration of angle blocks is a routine service provided by
the National Bureau of Standards. Test blocks normally come in sets of
16 nominal sizes:

1, 3, 5, 20, 30 seconds,¥
1, 3, 5, 20, 30 minutes, and
1, 3, 5, 15, 30, 45 degrees.

Periocdically all tests sets which hawe been received are measured
against two sets of NBS master angle blocks by intercomparing all blocks
of the same nominal angle. The two sets of master blocks are called
reference.blocks and check blocks in accordance with the role they play
in the measurement process. The reference blocks have been calibrated
by the "absolute" method and serve as "ground zero" for establishing the
values of the other blocks. The check blocks also have known values but
are treated as unknowns during calibration. Their calibrated valiues are
compared to their historical values in order to maintain control over
the measurement process. '

As part of the routine calibration each face of the test blocks is
measured for flatness and for squareness to its top and bottom surfaces.
(These measurements may be omitted on test blocks which have previously
been calibrated at NBS.)

The purpose of this paper is to describe each phase of the calibra-
tion process and give a detailed description of the mathematical model
for the intercomparison scheme. Three statistical tests for process
control are described and an example is given.

'There is not an abundance of literature on angle blbck calibration
available. However, general (and often grief) discussions of angle
blocks may be found in [2,3,4,5,6,7,8].%

2. Measurement of Flatness

The two polished faces of each test block may be denoted by b
(vase) and h (hypotenuse) as shown in Figure 2.1. The flatness of each
face is measured in a light box using a Fizeau-type interferometer. An
optical flat is placed over the base and adjusted until a series of
interference fringes is observed as shown in Figure 2.2. A moveable
hairline is adjusted to touch the ends of one fringe and the ratio a/b

is estimated where a is the maximum deviation of the fringe from the

_*Customary U.S. units are used in this report rather than the recog-
nized metric (SI) units. The well established ongoing calibration
procedures described here employ customary units exclusively. The
conversion to SI units will be made at a future date.

**Numbers in brackets indicate references listed at the end of this

paper.
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hairline and b is the fringe separation. The out-of-flatness is then
given by Aa
fb T (2-—1)

where A is the wavelength of the monochromatic light in the light box.
The value fy is similarly derived for the hypotenuse, and the value

fmax = max(fb,fh) (2-2)

is reported as the maximum out-of-flatness of the angle block faces.
Currently this value is rounded off to the nearest microinch.

The measurement of flatness is not intended to be of the highest
accuracy. The maximum out-of-flatness figure is an indicator of the
quality of the angle block and, depending on its magnitude, may indicate

a source of long-term variability in the measured values of the angle
between the faces.

3. Measurement of Squareness

The squareness of the base and hypotenuse to the top and bottom is
measured for each test block. Let the four interior angles between
these faces be given by {90° + 85, i=1,4*} as shown in Figure 3.1. An
autocollimator which is set to read vertical angle is mounted near the
anvil upon which the angle block rests. The block is wrung to the anvil
so that one of the four surfaces of interest faces the autocollimator
(as does the base in Figure 3.1). The autocollimator is adjusted
vertically to read near the center of its scale and the reading sq is
recorded. The block is then rotated 90° and rewrung to the anvil so
that the adjacent surface faces the autocollimator. The reading so is
is recorded. The rotation pattern is continued in the same direction

until readings s3 and s}, have been recorded. The readings take the form
(ignoring possible error terms)

sy = A - B, : (3-1)

for 1 = 1,4 where A is some initial reading of the autocollimator.
Assuming that the surfaces are true planes then By + Bo + 83 + By = 0.

Incorporating this equation with Equation 3-1 and solving for the unknown
parameters gives

A= (s9 +sp + s3 + sy)/b and
(3-2)
Bi = A - Si
for i = 1,4. The value
Brax = max(|81], |82, B3], [8y]) (3-3)

“Throughout this paper the abbreviated notation i = p,q indicates that i
takes on the consecutive integer values p, Ptlyeee, =1, q.
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is then reported as the maximum out-of-squareness of the angle block
surfaces. Currently this value is rounded off to the nearest arc
second. :

The measurement of squareness is not intended to be of the highest
accuracy. As in the case of flatness measurement, the maximum out-of-
squareness figure indicates the quality of the angle block and a
possible source of longsterm variability.

4. Measurement of Angle between Faces

4.1 Setup Procedures
. ‘ )

Two autocollimators and a serrated anvil are mounted on a surface
plate as shown in Figure 4.1l. The anvil has three stops which enable
the angle blocks to be inserted at the same position repeatedly. Since
it is usually most convenient to measure the smallest blocks first, a 1"
block is inserted on the anvil and the two autocollimators are aligned
so that the block is centered in their respective fields of view and
each reads near. the ‘center of its scale. After this point auto-
collimator A does not have to be realigned, but autocollimator B must be
realigned for each different nominal angle. The autocollimators are
‘connected to a digital voltmeter which displays the difference between
their readings. The voltmeter is set so that a larger block size gives
a larger reading. ‘ ;

In order to keep track of the blocks during measurement, small
pieces of masking tape can be stuck to the side of the surface plate in
front of the anvil and numbered from 1 to n where n is the total number
of blocks to be intercompared. (Normally there is one reference block,
one check ‘block, and n-2 test blocks although an extra check block is
sometimes included.) The corresponding identification numbers which are
engraved on each block are also written on the pieces of tape, and the
blocks are then set in the proper positions. The blocks should be
checked to see that they are free of lint and smudges. The anvil should
also be cleared of lint and dust particles so that the blocks will sit
flat during measurement. '

4

4.2 Intercomparison Scheme

Two series of measurements are made on each set of blocks of the
same nomlnal size. _In the first series the blocks are in the
"top-up” position, and in the second series they are in the "bottom-up"
position (Figure 4.2). 1In the "top~-up" position the inscribed block
size reads from + to - while in the "bottom'up" position it reads from -
to +.

The intercomparison scheme is illustrated in Figure 4.3 for n = T.
The check block and each of the test blocks is compared to the reference
block and to the two blocks ahead of it in a counterclockwise direction.
The reference block must always appear in position 1 (center). The
check block may appear anywhere on the perimeter, but for the sake of

p



CALIBRATION SET-UP
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uniformity it is normally put in position 2. Angular differences
between the blocks are obtained by making n-l groups of seven
measurements each. From each group three differences are derived in the
manner described in the following section.

4.3 Measurement Equations

For each block size the first group of seven measurements is ob-
tained by inserting the blocks on the anvil in the order 2-3-2-1-2-4-2,
Let the correspondlng readings of the dl%ltal voltmeter be given by the

! t
vector ¥y = Wy Y10 yl3 Y1l ylS Y16 yl where the symbol ' indicates

vector (or matrix) transposition. Let the deviations from nominal angle
of the n blocks be given by a = (a az...an)'. The first group of seven
measurement equationsg is then giveil by

yi1 = A + ap + €171

Y12 = A + a3z + d + g0

y13 = A+ a> +2d4 + €13

Y1k = A + a3 + 3d + e7) (4~1)

V15 = & + ap + hd + €35
¥y16 = A+ ay +54 + €16

yit = A+ ap + 6d + €17

where A is some initi¥al reading of the digital voltmeter, d is a linear
drift factor, and the €43 's are independent error values from a

distribution w1th mean zero and variance d (see section 4.5 for a

discussion of o ) Let three new computed observations for the first
group be given by the vector zq = (zll zZ12 z13)' where

211 = (311 - 2y12 +¥y13)/2
z12' = (y13 - 2y14 + y15)/2 (4-2)
213 = (y15 - 2y16 + y17)/2 *

Then in matrix notation 2z; = My; where
1-2 100 0 0
M=-f0 0 1-2 100 (4-3)
0 0 0 0 1-2 14.

: 2
Since Var(y1) = oyI then Var(zj) = o,V where-

T



INTERCOMPARISON SCHEME FOR 7 ANGLE BLOCKS

T-TEST BLOCK
C=CHECK BLOCK
R=REFERENCE BLOCK

Figure 4.3
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1 6 1 (L-k)

=1 -

(Note that in forming z; the A and d terms drop out.)

The remaining n-2 groups of measurements are taken and transformed
in a similar manner to give the complete 3(n-1) vector of new observa-

] ] 1
. = - '
tlpns z (z1 Zy eee zn—l) .
L. 4 Method of Solution

Let E(z) and Var(z) denote the statistical expectation and variance
of the random vector z just described. Then the least squares estima-
tion [1,10] of the angular values takes the form

E(z) = Xa (4=5)

where X is the (3n-3) x n matrix

0 1-1 0 0 0 0]
-1 1000 0O
0 1 0-1 0 0 0
0 0 1-1 0 0 0
-1 01 0 0...0 0
0 1 0 -1 0 0

X = . (4-6)

0-1 0 0O 0 1
-1 0 0 0 O 0 1

| 0 0-1 00 0 1 _

2
and Var(z) = Wo, where W is a (3n-3) x (3n-3) block diagonal matrix
given by

v 0 O
0O vV o

W = . . (h-'T)
0 0 V]

The normal equations (incorporating the restraint ay = m) take the form

9 ' '



-1 ' -]
X'W X a o X'W =z
- - ’ (L-8)

where a' = (1 0 ... 0) and A is a Lagrangian miltiplier entering in the
minimization process. The least squares estimates are given by

- -1 -1 -1 | -1 |
a W X a Wz c ,1] X'W z]
A a' o0 m L' ‘OJ m J

where %! (11 ... 1) and C is theAvariance-covariance matrix of the

estimate a. The predicted values of the observations are given'by

A~ A

z = Xa , ' o (k-10)
and the deviations by
d=12z -2, (b-11)
The estimate of oy is given by
s. = 4a'Wtd/(2n-2) (4
- TwE -12)

and the within-series standard deviation of the estimates by

' *
aw’ai = c"wvcii = k% (4-13)

A X ~ t
Let the estimates o from equation 4-9 be called a if the blocks

for i = 2,n.

~b '
were in the "top-up" position and o if they were in the "bottom-up"
position. Then the final angular values assigned to the blocks are
given by
At Ab
= a + 3 (h—lh)
2 .

Q1>

~ ~ A A
s _ 2 2 2,
where o (al’ Gy eees an) .

¥By the symmetry of the intercomparison design, C11 = 0 and Cpp = C33 =
e+ = Chpe Thus the value of Ci; (i = 2,n) depends only on n, the

number of angle blocks in the design. The values of ky =1/Cii and

k2 = C.. are tabulated in Table 1.
n 11

10



4.5 Sources of Error

There are three known types of error in the reported test block

’values 32’ evey E£. The first type, called long-term systematic error,

is due primarily to the uncertainty in the accepted value of the
reference block. This uncertainty, denoted by E, affects the "top-up"
and "bottom-up" values equally and thus must be attached to the reported
values given in equation L4-1hk. For the current set of reference blocks
E is believed not to exceed 0.20 second for each block size. Errors of
this type from other sources are assumed to be negligible.

The second type of error, called within-series random error, is due
to the "noise" in the measurement system which is caused primarily by
fluctuations in atmosphereic conditions and instabilities in the
autocollimators. The true within-series standard deviation (or, more
precisely, the standard deviation of the within-series error values) Oy
is estimated from each individual series by s, as described in the
previous section. The sy values from all series done over the first
several years of operation of the measurement system were pooled to give
the best available estimate of oy. (In the pooling process the sy
values were weighted according to their degrees of freedom.) The value
obtained was

oy = 0.040 second (k-15)

. which can reasonably be considered the true value since it is based on
"N > 2000 degrees of freedom.

-

The within-series standard deviation of the reported value “1 is
then easily computed from Equations 4-13 and 4-14 to be

ry knaw
%l T (1-26)

(see Table 1 for values of kn).

The third type of error, called between-series random error (or
short-term systematic error), is due to changes in the system when the
blocks are flipped from "top-up” to "bottom-up" positions. (The
presence of this type of error was first detected at NBS when we began
measuring angle blocks in the two opposite orientations. In many cases
the differences between "top-up" and "bottom-up" values were much larger
than could be explained by the within-series random error.) Some
probable causes for these changes are

(1) imperfections in the master and test block geometries such
as out-of-flatness and out-of-squareness of the faces,

(2) misalignment of the autocollimators (i.e., reading some

vertical angle), and 11



(3) the presence of burrs on the anvil which tilt the blocks
differently when they are in different orientations.

A discussion of the estimation and propagation of this type of error is
given in the Appendix. -One result is that the between-series standard

deviation of the reported value &i is o é = oy (Equation A-11 in the
Appendix). 7

The uncertainty of the reported value Gi is taken to be the sum of
random and systematic components of error. The random component is
obtained by combining the within-series and between-series standard
deviations in quadrature and then taking the three standard deviation

limit. Thus the total uncertainty of ai is

ot l.22 2 ‘ ' _
Uai =3 -é-kncw + o, + E : _ (4=17)

4,6 Statistical Tests

Two statistical tests are applied to each series of measurements in
order to maintain control over the measurement process.,

The (two-sided) z test compares the computed value of the &heck

block, a.s to its historical value, a,. The test is implemented by
forming the statistic

' Gz - ag
z = = 3 (4-18)
know + 2ob

and comparing it to the appropriate critical value. Note that the
denominator in the above expression is the total standard deviation of

a, as given by Equations 4-13 and A-10 (Appendix). The number of

degrees of freedom associated with 03 and a% (N and M respectively) are

very large, so the denominator can be reasonably considered a "true"
standard deviation. Thus, under the hypothesis that the true value of
the check standard is 8c, z has the standard normal distribution (mean
zero and variance one). The critical value at the .01 level of
significance is z gg5 = 2.58. If |z| > 2.58 the usual statistical
procedure is to reject the above hypothesis. However, a large z-value
may be caused by something other than a change in the true value of the
check block. 1In fact, it may be caused by a change in the true value of
the reference block or by the malfunctioning of a component in the
measurement system. Whichever the case, a large z value indicates that

12



something extraordinary has happened, and the usual procedure is to
repeat the series of measurements.

The (one-sided) F test compares the computed within-series standard
aeviation, sy, to the true within-series standard deviation, Oye The
test is implemented by forming the statistic

(k-19)

H
< 2%

and comparing it to the appropriate critical value. Under the
hypothesis that S, = Oo» Fl has the Snedecor F distribution with 2n-2

and N degrees of freedom. The critical value at the .01 level of
significance is F_g9g(2n-2,N) which is available in tables (see Table 2,
column A). If Fy > F gg(2n-2,N) then the above hypothesis is rejected
because the observed system variability is extraordinarily large. This
indicates the malfunctioning of a component of the measurement system or
a blunder of some sort by the operator. As before, the usual procedure
is to repeat the series of measurements.

if aAgiven series passes both the z and F tests, then that series
is said to be "in statistical control.

A third statistical test is performed on each pair of "top-up" and
"bottom-up" series in order to control the between-series variability.
The test is implemented by forming the statistic

S2
F. = b (}4—20)
2 ;2 ,
b
(where s% is computed as in the Appendix) and comparing it to the
appropriate critical value. Under the hypothesis that s% = oi, F2 has

the F distribution with n-l and M degrees of freedom (see Table 2,
column B). If Fp > F gg(n~1,M) then the above hypothesis is rejected.

A large value of Fp may be caused either by a malfunctioning of the
measurement system or by one or more blocks being of inferior quality.
If the operator decides the latter case is true then he may accept the
results and note the problem in the appropriate Report(s) of Calibration.
Otherwise both series should be repeated.

5e Examgle

‘In August 197k an intercomparison was made between one set of
reference blocks, one set of check blocks, and five sets of test blocks.
The data sheet for the 1° blocks is shown in Figure 5.1 as an example,

13



ANGLE BLOCK CALIBRATION -~ INTERCOMPARISON OF _7_ BLOCKS

Nominal Angle Check Std. Lot # L9325 Comments:
D3 5 15 20 30 45 observer _W, G.
sec min pate _8/15/74
Do not pause during any group of 7 measurements. OK to pause between groups.
Block Identification
1 NBS-|
1. 2 2.75 1 2 _N85-7 1. 2 2.03
3 2.92 % 3 BAC-16 - 3 2.26
2 2770 - 4 Ucc-36 2 2.07
1 2.92 + 5 HAC-24- 1 2.23
2 2.68 top up 6 NBs-25 2 2.06
4 2,93 ° ' 1512-¢C 4 2.36
2 2,71 2 2.04
. 3 2.929 v. 6 1. 87 v. 6 _I:+33 m. 3 2.23
&4 2,85 - 7 3.05 7 2.53 : 4 2.3
3 2!26 6 [ 84 6 .33 3 2.9
1 2.78 1 2.4 1 2,05 1- 2.8
3 2.78 6 1.7% 6 .43 3 2,26
s 3.27 2 2,22 2 1.3+ s 2.4¢
3 2.7 6 _|.73 6 4! 3 2.5
. 4 2.77 vi. 7 - 2.96 vi. 7 2.E5€ ur. &4 2.27
s 3.25 2 2.21 2 1.5 5 2.4
4 2.71 7 293 7 _2.bt 4 2.25
1 2.70 1 2.40 1 2.4 1 2.1
4 2.5 7 294 7. 2.6/ 4 . 2.21
6 .96 3 2.40 3 204 6 [.42
4 2.6S 7 2,94 7 2,65 4 2.2%
Iv. 5 3.‘1:' w. 5 2,40
6 1.92 6 .49
3 .L.Qg. s 2.30
1 2.57 . 1 2,05
5 3.09 s 2.34
7 314 7 251
s 3.0 s _2.33
uscomm-nesoc 3/ 75
Figure 5.1
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Calibration of 1° Angle Blocks - August 197h

Deviation from Nominal Angle

% *% -
Block Series 1 Series 2 Avg Diff (1-2)
NBS-1 (reference) ~-.15" -.15" —— —
NBS-T (check) -.36" -.32" -.34" -.0h8" -
BAC-16 o -.14" -.07" -.10" -.07"
ucc-36 -.15" -.02" -.08" -.13"
HAC-2h +.35" +.11" | +.23" +.24"
NBS-25 ~.83" - 79" -.81" ~.0L"
512—C +o39" +038" +-38" +-Ol"
Uncertainty (eg. 4-1T7) 0.ho"
Accepted value of
check standard -.39" -.39"
Computed value of
_ check standard -.36" -.32"
z statistic (eq. 4-18) -1.17 -2.63
Z 995 "  2.58 2.58
Accepted within-series
standard deviation (oy)  .OLO" .Oko"
Computed within-series
standard deviation (sy)  .018" 026"
F1 statistic (eq. 4-19) o0.21 0.h2
F_ g9(12,=) 2.18 2.18
Accepted between-series
standard deviation (oy) .063
Computed between-series
standard deviation (sy) .078
: , v *
Fo statistic (eq. 4-20) © 1.55 top-up
. *%
F.99(6,650) ' 2.84 bottom~up
Figure 5.2
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The estimated angular values and associated statistics computed from
these observations are shown in Figure 5.2. The three statistical tests
show both series of measurements to be "in statistical control". The
listed uncertainty value, as computed from Equation 4-17, applies to
each of the average values enclosed in the box.

6. Conclusion
The lumping of test sets into a single large intercomparison scheme
has proven to be much more economical than calibrating one set at a
time. The data reduction process has been fully computerized for
several years. The output includes a Report of Calibration for each set
of test blocks and for the check blocks.

The larger angle blocks may alternately be calibrated by the
"absolute" method whereby each test block is compared to several index-
ing table angles that sum to exactly 360°. There is no reference block
involved, hence the test block is measured more accurately. The draw-
back is that the number of measurements required becomes cumbersome for
blocks of 5° or less. Currently this method is used only to calibrate
the NBS reference blocks or single large test blocks.

In closing it seems fitting to speculate on how angle blocks might
be measured more accurately in the future by the intercomparison method.
An examination of the three components of error in the uncertainty
statement (Equation 4-1T7) is revealing. For the case n=7 (as in the
example in Section 5) the numerical value of the uncertainty is

Ug,
i

1° )
: 31/;(.&815)(o.oho) + (0;063)2 +0.20

3‘Jo.ooo385 + 0.003969 + 0.20 (6-1)

0.20 + 0.20

0.k0

The within-series random error component is by far the smallest of the
three, and it is doubtful that any further reduction could be made
there. On the other hand, the between-series component seems to be an
area where real improvements are possible. There has not yet been a
full-scale investigation at NBS into the cause of differences between
"top~up" and "bottom-up" values. One might expect large differences to
be positively correlated with the maximum out-of-flatness and out-of-
squareness of the blocks. However, visual examination of the data has
never given a hint of such a correlation. PFurther investigation into
the problem is needed. If the differences could be explained and
removed then the between-series component of error could be drastically
reduced. 16



The systematic component consists solely of the uncertainty in the
reference blocks. This component could be reduced to some extent by
painstakingly recalibrating the reference blocks "absolutely". However,
in order to obtain realistic uncertainty values the reference blocks
would have to be calibrated in both the "top-up" and "bottom-up"
positions. It is likely that differences between values obtained in the
two positions would be larger than expected, thus the uncertalnty values
of the reference blocks would be inflated. A reduction in this
component of error then seems to depend on the reduction in the between-
series component.

It now seems clear that under the present measurement system the
main obstacle blocking the path toward more accurate angle block
calibrations is the between-series beast which rears its ugly head in
two places. The removal of this obstacle, if it is indeed removable,
would be a significant accompllshment.

T



Table 1

2
Values of k, and k, for selected values of n

h Xn Cii k= Gy
L .T9L9 .6318
> <Th65 ‘ 5572
6 .T111 5057
i 6939 4815
8 6824 L4657

Table 2

Critical values of two F distributions at the
.01 level of significance for selected values of n

No. of Blocks Column A Column B
in series

% *%
n F.99(2n-2,=") F,99(n-1,650 )

4 2.80 3.82

5 2051 3.35

6 2.32 3.05

T 2.18 2.84

8 2.07 2.68

*Since N > 2000 it is reasonable to take N = « in tabulating the
critical values.

**The value of M is 650 as of the writing of this paper.

18
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Appendix

Estimation and Propagation of Between-Series Error’

A.l. Estimation of Between Series Standard Deviation

The true between-series standard deviation op is estimated from
each pair of series in which the same set of blocks are measured in
opposite orientations. The least squares estimates of the angular
values, as given in Equation 4-9 may be expressed as

&F = (a, + 6? - Gt) + 9? and
i i i 1 i
_ . , (A-1)
ab _ b b b
ap = (a; +8; - 8;) + 8,

for the "top-up" and "bottom-up" positions respectively where i = 2,n.
The a3's (without superscript) are the "true" angular values of the
blocks, and the 8's are error values representing within-series vari-
ability. The 6's have mean zero, and

t] b7
o
t] . b -
% ®3 .
Var . = Var . = Ccs (A-2)
et eb
n n
has o . J

where the (n-1) x (n-1) matrix C is the variance-covariance matrix of

A ~

the estimates a5 a3, seey &n which is obtained by deleting the first

row and column from the matrix C given in Equation L-9.

The 6's are ingependent error values from a population with mean
zero and variance ab representing between-series variability. The sub-

script indicates the block to which the error is attached (with the
reference block being 1). The 6§ values are assumed to remain constant
throughout their respective series and thus do not contribute to the
within-series error. The standard deviation of the § values, 0., is
-estimated by considering the n-1 vector of differences from a pair of
series
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"t ~b
%2 T %
ab o
3 3 ,
h= ) s T (a=3)
~% ~b
a - a
n n]j.
Now from Equations A-~1,
St b _ bt b bt b (Ah)
o - o = Gi - 61 - Si + Gl + ei ei
for i = 2,n, thus
b - @0) = 4t 2 (A-5)
Yar(ai - ai) = hcb + 2C, 0,
and .
~t  ab At. b 2 2
- - . o= + _6
,Cov(mi .ai, qj J) = 20} 20130w (A-6)

for i = 2,n; j = 2,n; and i % J. .Let I denote the (n-l) x (n-1)
identity matrix and J denote the (n-1) x (n-1) matrix of one's. Then
the variance-covariance matrix of the vector h is given by

2 .2 or)o? = Ho2 (A=T)
2(I + J)a +2Ca_ = 2(I + J + Cr)oy = Hop
where r = _Z., a known constant. The estimate of Gb from a pair of
a
b

series is then given by

-1
sp = q2'H B (A-8)
n-1

where n-1 is the associated degrees of freedom.

Note that during the ongoing measurement process the ratio r is
known because oy and op are assumed known. However, before Oy was
determined the value of r was unknown. To initially determine 0y the
estimates sy from each series done on the measurement system during the
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first several years of operation were computed according to Equations
A-T and A-8 with r = 0. These estimates were then pooled (using weights
n-1l) to give an estimate of Ope The value of r was recomputed using
this estimate of o, and the process was repeated in an iterative
fashion until the estimates of oy converged. The value obtained was

o, = 0.063 second (A-9)

which can reasonably be considered the true between-series standard
deviation since it is based on M = 650 degrees of freedom.

A.2 Propagation of Between-Series Error
The between-series standard deviation of 03, the estimated angular
value of the i%h block from a single series, is easily computed from
Equations A-l to be ' ‘

Ot = 0o ~b= /o . -10)
bya; = %b,af /2qb (A-10)

This term appears in the statistic given in Equation L4-18.

The between-series standard deviation. of Ei, the estimated mean
angular value of;the i%h plock from a pair of series, is computed from
Equations 4-1Lk and A-1 to be -

This term appears in the expression for the total uncertainty of the
reported angular values given in Equation 4-17.
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