Human Assisted Speaker Recognition

CRAIG S. GREENBERG, ALVIN F. MARTIN, MARK A. PRZYBOCKI

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, INFORMATION TECHNOLOGY LABORATORY, INFORMATION ACCESS DIVISION

NIST Speaker Recognition Evaluations (SRE)

NIST SRE measures speaker detection performance of stateof-the-art research systems on common test data

- Since 1996: sponsored by DoD, managed by NIST
- Open to participants worldwide
- Machine only: no listening or other human interaction allowed
- Recorded samples compared may differ in channel and style, as in forensic/biometric apps:

• Interviews and telephone conversations, many microphones

The Speaker Detection Task

Given pairs of speech recordings:

- A "training" recording of 10sec, 5min, 8 min...
- A "test" recording of any such length
 Telephone or microphone, conversation or interview
- Prior probability, and cost of miss and false alarm System response, for each pair:
- Same voice: Y/N?
- How likely? (log likelihood)

SRE 10 Evaluation Test Conditions											
		Test Conditions	est Conditions								
		10sec	5min (tel/mic)	summed channels							
IS	10sec	optional	-	-							
ndition	5min (tel/mic)	optional	required	optional							
g Co	8conv	optional	optional	optional							
Trainin	8conv summed channels	-	optional	optional							

Number of trials: 31,387 - 610,748 per test condition Number of speakers: 596 Data from the Linguistic Data Consortium (LDC)

Performance Metrics

Detection (not identification)

- False reject (miss): incorrectly reject a speaker
- False accept (false alarm): incorrectly accept a speaker
- Tradeoff made by decision threshold

• Measures:

Equal-error-rate (EER)

× DCF

- o DET Curve w/ all tradeoff points
- Example Figures of Merit:
 - × %EER (easy to explain)
 - × %FR @ .01%FA (forensic, military)
 - × %FA @ 10%FR (access control)

Why evaluate? SRE Performance History on Similar Tasks

0.08 个个个 New Metric Ahumada (Spanish) Landline 0.07 Interview train: (40 target Multimodal (FBI) + Cell/Land 2 speaker detection land/cell test speaker Landline (summed channel) paradigm) different mic test 0.06 Landline 2 2-speaker same mic test min train 30 Cellular 2 min (summed Actual DCF sec test train 30 sec test channel) 0.05 Cell/Land Eng. 5min train Cross-mic 0.04 and test 1conv train(tel) 1 conv test (mic) 0.03 Cross Language 0.02 Cell/Land 8conv train English Only 0.01 1 conv test 0 1996 1997 1999 2000 2001 2002 2003 2004 2005 2006 2008 2010 1998 Year

History of Performance

Original Chart provided by Douglas Reynolds of MIT-Lincoln Laboratory

Wow, that's great! Do humans even matter any more?

<u>**ALL</u> Speaker Recognition Applications Involve Humans!**</u>

- Forensic
- o Biometric
- Watchlist

) ...

How can human experts effectively utilize speaker recognition technology?

 HASR (*Human Assisted Speaker Recognition*) began addressing this question – a 2010 pilot test

The HASR Task:

Given two different speech segments, determine whether they are both spoken by the same speaker

• HASR included two tests:

HASR1HASR215 trials150 trials

• HASR systems may use human listeners, machines, or both

• Participation open to all who might be interested

Sample Trials

HASR1 Results Summary

													_						
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	Misses	FAs	Total	
System 1	t	f	f	f	f	f	t	f	f	t	f	f	f	t	f	2	-	2	Correct Accept
System 2	t	t	f	f	t	f	t	t	f	t	f	f	t	f	t	1	3	4	concernecept
System 3	t	t	f	f	t	t	f	f	f	t	t	f	f	t	f	2	3	5	
System 4	t	t	f	f	t	t	f	f	f	t	t	f	f	t	t	1	3	4	Correct Reject
System 5	t	t	f	f	t	f	t	t	f	t	f	f	t	f	t	1	3	4	5
System 6	t	f	t	t	f	t	f	f	t	f	t	f	f	t	f	4	5	9	
System 7	f	t	f	t	f	f	f	t	f	f	f	f	f	t	f	5	3	8	Misses
System 8	f	t	t	t	f	t	f	t	t	t	t	f	f	t	f	4	7	11	
System 9	t	t	f	t	t	f	f	f	t	t	t	t	t	t	f	2	6	8	
System 10	t	t	f	t	t	f	f	f	t	t	t	t	t	t	f	2	6	8	False Alarms
System 11	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	-	9	9	
System 12	f	f	t	f	t	t	t	t	t	t	t	t	f	t	t	1	6	7	
System 13	f	t	t	f	t	t	t	f	t	t	t	t	t	t	f	2	7	9	
System 14	f	t	t	f	t	t	t	f	t	t	t	t	t	t	f	2	7	9	
System 15	t	f	f	f	f	f	t	f	f	t	t	f	f	t	f	2	1	3	
System 16	f	t	f	f	f	f	t	f	f	t	t	f	f	t	f	3	2	5	
System 17	t	t	t	t	f	t	f	f	f	t	t	f	f	t	f	3	5	8	
System 18	t	t	t	t	t	t	f	f	t	t	t	t	t	f	t	2	8	10	
System 19	f	f	f	f	t	f	f	t	f	t	t	f	f	t	t	2	2	4	
System 20	f	f	f	f	f	t	f	f	f	t	f	f	f	f	f	5	1	6	
KEY	Т	F	F	F	Т	F	Т	F	F	Т	F	F	F	Т	Т	-	-	-	
Number of Errors	8	14	8	8	8	11	11	7	9	2	15	7	8	4	13	46	87	133	

HASR2 and <u>Leading</u> SRE10 Automatic Systems

135 HASR2 trials

Six HASR systems (thin lines)

Six Automatic systems (thick lines)

11/30/2012

HASR2 and <u>Corresponding</u> SRE10 Automatic Systems

135 HASR2 trials

Five HASR systems (thin lines)

Five Corresponding Automatic systems (thick lines)

11/30/2012

Conclusions

- Humans are part of all speaker recognition applications
 Understanding their capabilities and limitations is important
- Strong machine performance does not imply ready for deployment in any particular application
- The assumption that humans are superior to machines at speaker id needs to be qualified
- Spun off a whole line of research within the community
- More experiments planned