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NIST SRE measures speaker detection performance of state-
of-the-art research systems on common test data

Since 1996: sponsored by DoD, managed by NIST
Open to participants worldwide

Machine only: no listening or other human
interaction allowed

Recorded samples compared— may differ in channel
and style, as in forensic/biometric apps:

Interviews and telephone conversations, many microphones



Given pairs of speech recordings:
A “training” recording of 10sec, 5min, 8 min...

A “test” recording of any such length
Telephone or microphone, conversation or interview

Prior probability, and cost of miss and false alarm
System response, for each pair:

Same voice: Y/N?

How likely? (log likelihood)
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Number of trials: 31,387 - 610,748 per test condition

Number of speakers: 596
Data from the Linguistic Data Consortium (LDC)



Performance Metrics

Detection (not identification) @
o False reject (miss): incorrectly reject a speaker
o False accept (false alarm): incorrectly accept a speaker

o Tradeoff made by decision threshold , \ | Detection
Error Tradeoff
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Why evaluate?
SRE Performance History on Similar Tasks

History of Performance
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Wow, that’s great! Do humans even matter
any more?
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HASR (Human Assisted Speaker Recognition) began
addressing this question — a 2010 pilot test

The HASR Task:

Given two different speech segments, determine
whether they are both spoken by the same speaker

HASR included two tests:

15 trials 150 trials

HASR systems may use human listeners, machines, or both
Participation open to all who might be interested



Trial: Pair of Speech Recordings (1 train, 1 test)

» Used “difficult” cross-channel trials
Training data from interviews included various room mic channels

Test data from phone calls included some with induced high or low
vocal effort

» In-house baseline automatic system processed all possible
cross-channel trials and the most difficult of those were
selected for perception based sub-selection



Sample Trials
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Sample Trials
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HASR1 Results Summary
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Difficulty of 2010 HASR1 Trials
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HASR1 System Performance
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System Performance on HASR1 and HASR2
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Results similar for
HASR1 and HASR2




HASR2 and Leading
SRE10 Automatic Systems

All HASR Systems, Lead Primary Main Systems
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HASR2 and Corresponding
SRE10 Automatic Systems

All Corresponding Primary Main and HASR Systems
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Humans are part of all speaker recognition applications
Understanding their capabilities and limitations is important

Strong machine performance does not imply ready for
deployment in any particular application

The assumption that humans are superior to machines at
speaker id needs to be qualified

Spun off a whole line of research within the community
More experiments planned



