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ON CHARACTERIZING MEASURING MACHINE GEOMETRY

R. J. Hocken and B. R. Borchardt

ABSTRACT
We present a simple method for removing axis
nonorthogonality and checking for length dependent scale
errors in two-dimensional measurements. Use of this
method requires that a two-dimensional master gage (ball
or grid plate, for example) be measured in two positions
which differ by a rotation of the plate 90° with respect
to the measuring machine axes. The method is similar to
that proposed by Reeve [1] but requires only linear least

, squares fitting on a small computer.

1. INTRODUCTION

Typically two-dimensional standards consist of a plate with either a
grid of lines deposited on the plate or an array of spheres attached to
the plate. The goal of a two-dimensional measurement is to obtain the
array of coordinates of either the line intersections or the ball centers.
This measurement is usually done on a coordinate measuring machine where
either the plate, some locating device (microscope or LVDT probe), or a
combination of the two, both gage and indicator, is moved. The coordinates

are read from scales attached to the axes of motion.

In a perfect system this process gives the true coordinates, but in
practice the motions are never truly rectilinear, the scales on the two axes

are not identical, and the axes of motion are not orthogonal. The purpose



of this paper is to describe a simple technique for checking for scale
errors and nonorthogonality errors and removing such systematics from
the measured coordinates. 1In this treatment it is assumed that the
motions (x and y) are linear; thus straightness errors and errors’due to
vaw are assumed zero. [2] This measurement proceeds as follows. The
plate is placed on the machine table and onientedyso that its axes are
aligned, as well as possible, with the machine axes. The coordinates
are measured and normalized so that the specified plate origin has
coordinates (0,0). The plate is then rotated 90°, either clockwise or
counterclockwise, and the coordinates remeasured. (This rotation must
be within about 10 sec of 90° for the algorithm to work. Ten seconds is
the equivalent of 0.0005 inch in 10 inches of travel, a figure well
within the capability of any good measuring machine.) Again, the results
are normalized so the plate origin has coordinates (0,0). The two sets
of coordinates are inputs to a linear least squares fit which estimates
the nonorthogonality, the scale error, the difference between the actual
rotation and 90°, and the average x and y offsets between the two sets
of coordinates. From these results the nonorthogonality can be removed
and the scale differences either averaged or removed, if there is some
pressing reason to trust one scale over the other. (For instance, one
might use a laser interferometer for one of the scales and the machine
lead screw for the other.)
2. CALCULATIONS
Suppose the gage points on the plate can be specified by a set of

vectors (X,) which are the "true" coordinates. Then call the measured



set of N vectors in the first position (aligned with the machine axes)
(gli)N' The first set of measured vectors are related to the true vectors

by a matrix transformation, A. That is

=1i

where A i1s a matrix which describes the machine geometry. We call A the

X}, =AX ;i=1,X (1)

machine metric. For a two-dimensional measuring machine, there are

several possible and equally sensible choices for A. One choice is,

1l ~-a
Al = (2)
- 0 1
\
which describes a machine with scales which are equal but in which the
axes are nonorthogonal by an amount o. (o is in radians and is assumed
not to be more than a few microradians). This is the metric chosen by
Reeve [1] in his original paper on "multiple redundancy”, though he does
not use the same language to express his results. The machine metr?c in
(2) is written so that the x axes of the gage and machine are aligned
and the y axis of the machine is at an angle 90°-a. This choice is
arbitrary. A slightly more complicated metric one might sensibly choose
is:
1+y -a

= (3
0 1

A
=x
Here v is a small error term that is included to take into account the
fact that the scale for the x axis may be different than that for the

y and that one trusts the y scale more. An equivalent representation,

trusting the x scale, would be

- (4)



Either of these forms can be built into the model described. Suppose,
however, one believes the scales are different, by an amount vy, but one
has no idea which scale should be trusted most. In this case one should
choose a matrix that has symmetry in the scale error. A reasonable choice

is:

(5)

1>
i

It is shown in Appendix B, that all three of these forms, eq. 3, 4, and 5,
yield identical relationships between the coordinates measured in positions
1 and 2, though not identical "best" values for the coordinates. The
reason for this is simply that the numbers themselves cannot ever contain
information about the true choice of scale since this is arbitrary and de-~
cided by law rather than nature. Thus, only the differences between scales
may be ascertained and which one is to be termed "correct" is entirely the
decision of the metrologist. Since the three more general forms for the
machine metric, eqs. 3, 4, and 5, yield the same observational equations,

we can work equally well with only one of them.

Beginning then with éx’ we have, from equation 1, the set of vectors
(coordinates) measured in the. first position. They: are:

=A X i=1, N (1)

1
5178 %
The set of vectors measured in the second position is given by

Ky~ A B, £ LN ®

where B is the finite rotation matrix,

cosf siné

(7N

|l
i

-sinb cosh

T
where 6 = e



The order of A and B is important, because A and B do not commute
(i.e. AB # BA). The logic behind (6) is straightforward. The true
coordinates after rotation are:

Ly =BE, 1=1, ¥ 8

and when these coordinates are measured on the machine the numbers obtained

ares
1 = = A i =
Xp, =A X =A BX, i=1,§ (9

Equations (1) and (6) may be combined to yield

-1 -1
L B ' i =
X3 "8 B A K, I=LN (10)
which is the basic observational equation. Here the data, measured co-
ordinates in the two positions, are related by an equation which involves

the machine parameters, a and y, and the rotation angle 8.

Equation (10) would be exactly true in the absence of error. 1In a
measuring machine, there are, however, many ;:rors and equation (10) is
only true on the average. Also, because of the way we usually make measure-
ments, there is probably some linear offset, independent of the machine
metric, between the origins in positions 1 and 2. The normalization procedure
commonly used, that of subtracting the readings at the reference coordinate,
systematically biases all measurements with the error in that one reference
point measurement. This bias can be assessed by including in equation (10)
an offset vector g, which is assumed small, so that
x'=a Bltatxl +¢ i=1,N (11)
=i == = =2i = ’

It is easy vo show that since g is infinitesimal, A e=e, so that its in-

troduction at what appears to be the last minute is mathematically sound.



We now*simplify equation (11) by noting that the finite rotation
matrix B(8), where 6 = /2 + B, reduces to an "infinitesimal" type of
matrix. That is

cos %—+ B) sin C% + B) ~-B 1
(12

Hes
i
R

-sin C% + B) cos C% + B8) -1 -8

. , 2 . .
if one neglects terms in B~. Also, to the same order, the inverse of B is

_ -8 -1
B = (13)
1 -8
and the inverse of A 1is
==
-1 1-y o
Ay < (14)
- 0 1

With these first order approximations, the observational equations become:

LI | B - t
X5 < (B+a) X5q (1-v) Yo, t ey (15a)
and
1 = - t _ 1
Y., = (1~v) Xy, + (a—=B) o, + ey (15b)

where we have performed the matrix multiplications indicated .in equation

(11). (We emphasize here that equation (15) is exactly the same for any of

the three choices of A, equations (3), (4), and (5), mentioned previously.)

To obtain a best value for the parameters (a,B,Y,sX,ay) we must choose
them such that, on the average, equations (15) are satisfied. To do this,
we introduce a modified form of the traditional chi-squared which we define

as follows:

2 _ 1 S — . 2 R 2
X = 2N;§£=§:N (X3 - X4 (cale) )™ + (Y7, Y], (cale)) (16)



where Xii (cale) and Yii (calc) represent the right hand sides of equations
(15a) and (15b), respectively. A best value for the parameters will occur
when the quantity chi-squared is a minimum, and furthermore, chi;squared

at this minimum is just the rms standard deviation in the coordinates.

(We assume here that the random errors in the x and y measurements are

. , . 2
independent with mean 0 and variance o.)

We obtain the equations for the minimum in chi-squared by partial
differentiation of equation (16) with respect to each of the five para-
meters, setting these derivatives equal to zero. A resulting system of

linear equations is:

Ho

P=c, - (17)
where D is a 5 x 5 matrix and P and C are column vectors. Let us denote
the sums which form the matrix elements of D by dropping the i subscript,

9

the prime and the summation sign.

Then:
2.2
2X2Y2 Y2+X2 -—Y2 —Xz
X2 Y X X -Y
2 272 2 2
D = v2 Y. X -Y -X (12a)
= 2 272 2 2
2
X" Y2 -N 0
Y2 X2 0 -N
o N 2 x
where, for example, X2 = I Xéi and XZYZ = 3 XéiYéi'
i=1 i=1



Similarly,

2 2
X2 - Y2 - XY, - Y¥.X

1% ~ Y1%
XXy - X
C = XY, = Y, .. (18b)
RSTRY)
X, - ¥,
and
o
8
P = Y (18¢c)
£
X
)
y

The solution to equation (17) may be obtained by inversion of the
matrix D, or, because of the low order of the matrix, by Kramer's rule.
The latter method is that used in the computer programs given in the

appendices.

Let us now suppose we have obtained the solution to equation (17),

i.e., we have the best fit values of a, B, v, €y and ey as well as the



value for chi-squared. Using these parameters we can calculate a value

for the "true" coordinates. The equations are:

-1 X!

X, = A
X =4 14 (l9a)
and
- —l"'l 1 I
X, =B ATK, FE ~ (19b)
A resulting "best" value for the coordinates may be obtained by a

simple average; that is:

= 1 (-1, -1 -1,

gn'L'z(-é- T2 2 §i> 20

where we have already subtracted a factor-%_g in order that the re-

i In this calculation of the best

ference point have coordinates (0,0).
values for the coordinates the result is no longer independent of the choice
of A, unless vy is zero. Here the metrologist must decide which of the three
forms to use and this decision can only be based upon prior information or
intuition. (The computer program given in the appendices has the option

for using any of the three forms.) The set of coordinates, z& , are still
probably not in the desired system as they are in a coordinate system
aligned with the machine axes. They are put into the preferred gage system,
which usually hasbone point with a large X coordinate which is specified

to have a zero Y coordinate, by a simple rotation. If caiewas taken in

the initial alignment this rotation will be small, but this is not a

tSince the vector £ does not appear in the final solution for the coordinates
its introduction may be unnecessary. This, however, would be difficult to
prove as the coefficients for Ex’and € do appear in the solutions for the
other parameters 7



necessity for the algorithm to work. All that is required is that

positions 1 and 2 differ by a rotation that is within about 10 sec of 90°.

3. RESULTS
This algorithm was checked in two different ways. The first check

consisted of trying the program on data which was computer generated.
This data is shown in Table 1 which includes the "true'" wvalues, the

two sets of coordinates as seen in two positions nearly 90 degrees apart
fitting the data (using option 3, i.e., splitting the metric error). The
slight disagreements between the computed coordinates and parameters and
the "true" values are interpreted as stemming from the truncation of the
data at the microinch ievel. Also shown are the results of Reeve's pro-

gram applied to the same data.

Some testing of this algorithm has also been done on real data obtained
from the NBS 2~D ball plate measured on our Moore 5-Z coordinate measuring
machine. If the scale error (y) is set equal to zero the values obtained
agree well with those obtained from using the full multiple redundancy of

Reeve. These numbers are presented in Table 2.

4. CONCLUSIONS
It appears that this algorithm can be a valuable and relatively simple
tool for uncovering and correcting for simple errors in machine geometry.
Its advantages when compared with the complete multiple redundancy of Reeve
are three-fold. TFirst, it is simple enough to be programmed on a small

computer, if the machine has the capability of double precision

10



arithmetic.* Secondly, this algorithm includes a provision for assessing
scale errors aﬁd, thirdly, thé measurement method required coincides
with techniques usually used by the operators of measuring macﬁines. On
the negative side, this method is definitely‘less flexible in terms of
what kinds of measurements it requires; the desire to keép the program
small enough for a minicomputer leads to ﬁecessarily stringent require~
ments on alignment to keep our approximations wvalid. Also, this method
requires fewer measurements than the original algorithms which may
prevent the averaging of other errors that is inherent in full multiple
redundancy and the statistics used are certainly of an ad hoc nature.

The fact that it gives the same answers and standard deviations as the

more powerful method assures us somewhat on this latter point.

In order to make this technique more useful to a variety of measuring
machine users, a program using the -simple metric, equation (2), and a
program with the option of choosing one or all of the other three, are
provided in the appendices. They are in double precision Fortran of a
vintage suitable for most compilers. The program for the metric described
in the text is in Appendix D, while Appendix C contains a program for a
simpler metric and Appendix B the proof that the observational equations

are the same for any of the three matrices, equatioms (3), (4), and (5).

*Least square fitting of this type requires taking differences of
very large numbers which are often very similar in value. 1In coordinate
measurement so many significant figures are required and differences are
so small, it is doubtful that any of the programs described would work
in single precision.

11



%
Results of Programs Applied to Computer-generated Data.

Table 1.
ALBE 3
Raw Data Results Reeve

True Values Position 1 Position 2 Option 3 Results
X1 .000000 . 000000 .000010 .000000 .000000
X2 12.526471  12.526643 .001604 12.526471 12.526557
X3 3.141597 3.141647 2.674759 3.141597 3.141619
X4 .132671 .132702 11.989814 .132671 .132674
X5 12.026450 12.026648 13.779498 12.026449 12.026532
X6 6.936245 6.936358 7.217926 6.936245 6.936293
X7 12.137425 12.137615 9.875151 12.137425 12.137508
X8 1.110020 1.111044 3.762727 1.110020 1.110028
X9 9.735164 9.735305 3.166073 9.735164 9.735231
Yl . 000000 . 000000 -.000014 .000000 .000000
Y2 . 000000 -.000091 -12.526485 -.000000 .~.000000
Y3 2.674327 2.674304 -3.141279 2.674327 2.674346
Y4 11.989642  11.989641 -.131198 11.989642 11.989724
Y5 13.777777  13.777683 -12.024755 13.777770 13.777864
Y6 7.216943 7.216893 -6.935364 7.216943 7.216993
Y7 9.873462 9.873374 -12.136215 9.873462 9.873530
Y8 3.762542 3.762534 -1.110568 3.762542 3.762568
Y9 3.164785 3.164715 -9.734786 3.164786 3.164807
Parameters (X10—6)
Alpha 4.79 - — 4.81 4.66
Beta ~131.26 - - -131.24 ~133.98
Gamma 13.70 — —— 13.69 —_—
X-offset =14,20 — - ~14.04 -13.67
Y-offset 9.60 - — 9.45 10.01
Sigma - - - .5 57.5

* . L.
All dimensions are in inches and

dimensionless.

angles are in radians.

12
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Table 2. Results of Programs Applied to Real Data
o ALBE 3
Raw Data Results Reeve

Position 1 Position 2 Option 3 Results
Xl .000000 .000000 -.000000 .000000
X2 -3.000912 3.998718 ~3.000864 ~3.000868
X3 -2.000640 10.999142 -2.000515 -2.000517
X4 -4.000689 13.998858 -4.000532 -4.000537
X5 -.000163 14.999467 .000000 . 000000
X6 -8.001243 1.998189 -8.001196 -8.001207
X7 -6.001024 5.998378 -6.000930 -6.000939
X8 -9.001392 8.998041 -9.001258 ~9.001270
X9 -7.000838 12.998368 ~-7.000682 -7.000692
XlO -15.002162 .996753 -15.002107 -15.002129
X11 -13.001803 4.997135 ~13.001700 -13.001718
X12 -12.001441 9.997590 -12.001292 -12,001309
X13 ~14.002280 14.996517 ~14.002106 ~14.002125
Yl . 000000 . 000000 .000000 .000000
Y2 3.999098 3.001472 3.999145 3.999151
Y3 10.999378 2.002176 10.999406 10.999422
Y4 13.999388 4.002653 13.999428 13.999447
Y5 14.999390 .002266 14.999408 14.999429
Y6 1.999283 8.001495 1.999381 1.999384
Y7 5.999186 6.001825 5.999259 5.999268
Y8 8.999253 9.002606 8.999363 8.999376
Y9 12.999295 7.002651 12.999380 12.999398
YlO . 998845 15.002257 .999012 .999014
Yll 4.998944 13.002443 4.999086 4.999092
le 9.999228 12.002806 9.999367 9.999381
Y13 14.998424 14.004399 14.998583 14.998604
Parameters (XlO—e)
Alpha — - -.67 -.66
Beta - — -141.27 -141.50
Gamma — - 2.82 -
X~offset - —— =-14.30 0
Y-offset —-— - ~17.58 0
Sigma —-— - 16.9 17.0




APPENDIX A: A THREE PARAMETER FORM
A simple form for the maéhine metric is that described in the text, that
is

14+y-o

A= 0 1 (Al)

a8 -

This metric can be used and a simpler computation (with a shorter program)

done by neglecting the offsets € and sy. The observational equations are

then
Ry = =(B +o) Xy, = (1+) Yéi (A2a)
and
To1= (=) + (a=B) Y,y (A2b)

The linear equations at the minimum in chi-squared are:

2,2 2 2
0 2X2Y2 Y2+X2 XZ_YZ—XlYZ_YlXZ
2 2
X2 X2 Y2X2 -XlX2 (A3)
2 2
—Y2 Y2 Y2X2 X2Y2—Y1Y2

A Fortran program for the solution of A3 appears as Appendix C.
Table Al shows the results of the program on the dummy data described in

the text.

Table Al also shows the results on the real ball plate data previously
described, and comparison of these results with those obtained using
Reeve's full multiple redundancy. The large standard deviation in the Reeve

result on the dummy data is due to the inclusion of a length scale error, Y,

of 13.7 ppm when the data were generated.

14



Table Al. Results of Programs Applied to Computer-generated Data, with
Offsets Ex and Ey Neglected.®

ALBE 2 Results Reeve

ALBE 2 Results Reeve

on Dummy Data Results on Real Data Results
Xl .000007 .000000 . 000000 .000000
Xz 12.526483 12.526557 ~-3.000862 -3.000868
X3 3.141604 3.141619 -2.000514 -2.000517
X4 .132673 .132672 -4.000530 -4.000537
X5 12.026455 12.026532 -, 000000 .000000
X6 6.936251 6.936293 -8.001193 -8.001207
X7 12.137433 12.137508 ~6.000928 -6.000939
X8 1.111026 1.111028 ~9.001253 -9.001270
X9 9.735171 9.735231 ~7.000678 -7.000692
X10 -15.002101 ~-15.002129
Xll -13.001694 -13.001718
X12 -12.001287 -12.001309
X13 -14.002099 -14.002125
Yl -.000005 . 000000 .000000 .000000
Y2 -.000000 -. 000000 3.999144 3.999151
Y3 2.674324 2.674346 10.999401 10.999422
Y4 11.989642 11.989724 13.999422 13.999447
Y5 13.777775 13.777864 14.999401 14.999429
Y6 7.216943 7.216993 1.999381 1.999384
Y7 9.873466 9.873530 5.999257 5.999268
Y8 3.762539 3.762568 8.999460 8.999376
Y9 3.164785 3.164807 12.999374 12.999398
Yl0 .999012 .999014
Yll 4.999084 4.999092
le 9.999362 9.999381
Y13 14.998577 14.998604
Parameters (10_6 inches or radiams)
Alpha 5.03 4.66 -.81 -.66
Beta -130.55 -133.98 =140.40 -141.50
Gamma 12.99 — 3.69 -
Sigma 7.0 57.5 17.6 17.0

*
All dimensions are in inches and angles are in radians.
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Appendix B
EQUIVALENCE OF THE OBSERVATIONAL EQUATIONS FOR THE THREE FORMS OF METRIC
ERROR.

Three logical choices for a machine,metric with scale errors were given in

the text. They were

_ [ty ~o
&= |o 1)_ (Bla)
_ (1
A = (Q ) (B1b)
and
é:

1_
2 . (Ble)
0 1=

The basic observational equation is, in matrix notation,

| "l 1
= = B
X =AR A X +te=CXte (B2)

-To show that the three metrics above yield the same observational equations

we need only to show that

Ll pta maptat (83)
& TH= S5 T2 8

fio
o

i

A
=x

For the case where the metric is given by éx we have already shown in the

text that
-G -Q4)

. (B4)
(1-v) a-B 4

[
It

when

16



The inverse forms for éy and A are

-1 _ [1 «
A = ( 0 | 1+Y) .. (B5a)
and

-1 _ 1-v/2 o ,
£ = (o 1+y/2> | (B5b)

Substitution of either (B5a) or (B5b) into (B3) will yield, to first order

in the parameters, C, as given in equation (B4).

17



Appendix C
SUBRCULTINE ALIEZ2( X+ Y+0sSIGMALNPTS)

X AMND Y AKE THE ARRAYS FOR THE UTA4ATA, THE FIrST SUBE
IS JSE9 TC,DETE?MINE THE PGSITION OF THE SAGZ (1 O
IS ABOJT ©0 CEGREES CLUCKwWISE. VILwED FROM Triz TGP,
POSITIOCN 1.
G{1)=NCONORTHCGONALITY ANGLE, IN RADIANS
G{2)=kCTATICN DIFFERENCE FROM ©C DEGREESs RADIANS
G{3)=METRKIC ERROR (ASSUMED EQUAL EETWLEEN X AND Y)

T

AS THCSE USED IN X ANS Y., MJULTIPLIED EY 1EU6E.
NPTS=NUMBER OF GAGFE PCUINTS MEASURLED. DIMENSIONED FOx 50

NOOOOOONONO 0N

& -

IMPLICIT DCUBLE PRECISICN (A—H,0=Z)
DIMENSICN X(3550),Y(3452)1,A(3.3)20(3+3)1C(3).G(2)

SET SJUMS TC ZERC

O0n0n

Y22=L{eD¢

X22=0.00

XY12=0.D0

XY21=0402

XY22=CeD 2

XX12=C«D0C

YY12=0C0

DO 100 I=1.NPTS

Y22=Y22+Y{Z,1)==%2

XZ22=X22+X (2,1 )1*=2

XY12=XY1i2+4X(1,1)%Y{(2,1)

XY21=XY21+A{2,1)=Y{1,1)

RYZ2Z2=XY224X{2+. 1))=Y {2+1)

XX12=x212+X{1.1)¥X%X(2+1)
tope] YYL12=YY124¥(1s1)%Y(2,1)

c
C SET UP MATKIX
C

Alls1)=0eDC

Al 42)=2eDUumXY22
A{l1s32)=Yc2+X22
A{2.1)=X22
A{Z2s2)=X22
A{2+3)=XY22
Al{3+1)==Y22
A{342)=¥22
A{3,3)=XY22
C1)=~{XY12+XYZ1+YZ22~X22}
C(2)==XXi2-XYZ2
C{3¥=—YY124XY22

c
C C3 CALCULATES uETERNMINANT OF A
C
DD=D3(A)
C IF MATRIX IS SINGULAR. PRINT MESSAGE

IF{CDeEQe L aDu) WRITE{(E,22)
DO 157 1=1.3
DO 120 J=1.3
DC 127 K=1,3

18
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120 D{J+KI=A(JsK)
DC 130 L=1:3
130 DIL1)=CA(L)
182 S{1)Y=D2(CHY/0D
C
c CALCULATE G(1) THHROUGH G(32) FOR RETJRN TE MAIN PROGRAM
C
C
C COMPJTE CHISQUARE
C

CHISQ=2.D0
DG 203 I=1,NPTS
CXCE=(Gl1)+G(2) =X {2+ 1)=(1eD0+G(3))*Y (2,1}
YC={1eD0=G{3))2X{2,I1V+(G(1)=G(2)F=Y(2,1)
CHISQ=CHISQ+{X(1s I)=XC)I#*%x24 (Y (1s1)=YC)*x2 »
X(32I1=(X{1oI14+XCI*¥(1eDU~G(3))/2eD0+{Y(1+1)+YCI=%G(1)/2.D0C
Y{3+1)={Y(1+1)4YC )/ 2sDD
20¢ CONTINUE )
FREE=2+Du*NPTS=3.D2
SIGMAT1.D+{6%0USGRT(CHISG/FREE)
2¢ FORMAT(1X»' MATEIX OF COFe IS SINGULAK?')
RE TURN
END
FUNCTION D3(A)
IMPLICIT REAL%8 (A—F.0-Z)
DIMENSICN A{3,3)
D3=A{1+1)=A(2:2)2A(Z+s3)+A(142)%A(2+3)%A(3+1)+A(1+3)%A(2,+1)7A(3.2)
C=A(341)1%A(2+2)%A0133)=A(5:2)%A(2,3)=A(3s1)=A(3+3)=4(2,1)%A(1,2)
RE TURN

ERD
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SUBRCUTINEGE ALSCIIXs Y2 GaSIGHACNFTSIINORT)
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Appendix D

SURE D
RHCCSE FGwM CF 5CALE

isS IN X &XI1S
Is
IS 3°PLIT

INYY £XIS
GLTaEEN X ANJ Y AXIS
METRIC ERRGH

ICIT CCUBLE PRECISICN (A-H,G—Z)

EFROR:

DIMERNSICON X{IZeZ31aY(Z2aD22)sA(E,2)1.0(2«8)1,C(E)yG(3)

SCT SLUMS T2

DN=NPTS
IF{NCPT~
DPT=1.00
GG TO £3
P T=0.00
GT TL €3
OPT=0.200
CONTINUE
X1=_.eD2

Y1i=ZeDJ

Y2=1 D2

X2=leD3

Y2220 403
X22=
XY12=06072
XY¥2i=3.,00
XY22=0 .00
XX1z=CaeDJ
YY12=0.00

2)

Lel3

20 SIUMES NELRSED

©

m

~
s

0
RZ=Xe+X{zy1)
Y2=Y24+Y (2,11
Xil=x1+X(141)

Yi=Y1+4Y{1.1)

on
A

=

ZZRO

EJeOla

2

(&)

I=1NPTS

YZZRYL2+Y{ a1l )=
X22=XZ2+X(2s1)x=2

XY1lz=XYlz+Xx(1
XY21=XY21+X(2,
XY 2= XYZ2245(2

9

Idy=y{z2,1)
IY=y{1,1)
s )=y {(2,1)

20
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XX12=XX12+X(1.I)=X{2,1)
YY1e=YY124Y(1,10%Y{2s1)

SET UP MATRIX FUR SCLUTICN

A(1,1)=0.0D0
All1-2)=2.D0=XY22
E{1+3)3YZ22+X22
A{letd=—Y2Z
A{ls48)=-X2
A{2.1)=Xz2
A(2,2)=X22
A(2,3)=XY22
A(294)=—X2
A{2+:E)=0,D23
A(3,1)=—YZ22
A(3.2)=Y22
A(3.3)=XYZ2
A{3:4)=0.0C
2{(3.,8)=Y2
Al4s1)=X2
L{4+2)=X2
Al4,2)=YZ2
A4 44)=—RN
Al4+5)=0eD0
A(Sa1)==Y2
AlBs2)=YC
A(Z.3)¥=X2
A{S+4)=3400
A{S«E)=-RN
C{lY=—{XY1Z+XYZ1I+YZe—XZ2)
C(2)==XX12-XYZ22
C{3)==YY]1Z+XYc2
C{4)==X1~-Y2
C(35)=X2~Y1
OD=DETERM{ A, S}

WRITE EFRFOR MESSAGE IF #ATAIX IS5 SINGULAR
IF(CDeEGeLeDC) wRITE(E.2I)
DO 130 I=1.+%
DG 12L J4=1+5
DO 120 K=1.2
D JsKI=ALI LK)
DC 130 L=1,¢
D(L.I)=C(L)

CALCJULATE 46(1) THROJGH G(Z) FOK KRETURN TC MAIN PROGRAM
G{l)=DETERM(D-5)/20

CALCJLATE CHISG

CHISQ=3.090

DO 230 1=1.NPTS

KC==(G{1)+G{21) sx{EsI)={14D2+5(3))1=¥(251)+G{4)
YC=(1D~G(3) )= X2 1)+{G(1)=G{2))xY{2+,1)+G(3)
CHISQA=CHISG+{ X {1+ I)=XC)#=24 (Y (1.41)=YC)*x=2
XC=({X{1,I)+XC)I/200)=Gla)/2
YC={(Y(1sI)+YC)/2sC3)=GL(5)/2

IF (NCPT.ZGe4) GU3)=0400
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X{3+1)=XC2(1,05~-CPTx3(3))+Y¥Cx=G{(1)

Y(3411T(1el s+ (1aDC~CPTI®G{3)) =YL
222 CONTINUE

FREL=S2eDIENPTS=5.04

SIGMA= 16D+ US=DSART(CHI SG/FRER)

2% FORMAT{1X, ' MATRIX CF CRE. IS SINGUJLAR')
RETURN
END

FUNCTICGN DETERM{AAGNCRDER)
IMPLICIT COUBLE PRECISICN (A-h.0-2)
DIMENSICN ARRAY(S+2)5AA(5,5)

10 DETERM= 1400
D0 45 J=1,NCKDER
DU 45 K=1+NOGRDER ..
45 ARRAY (JoK) ZAA(JaK)
11 DO S0 K=1+NORDER
IF(ARRAY(K,K)) 41.21461
21 DO 23 J=K+NORDEF
IF{ARRAY(K+J)) 31,23,31
23 CONT INUE
DETERN=L 03
G TO €3
31 DO 34 1=K.ANGRDER

SAVE=ARRAY{(1s4)
ﬁRRﬁY(ItJ)=AFRAY(I9K)

54 ARRAY(1sK)=SAVE
DETERM==DETERM

41 DETERM=DETEFRM>ARRAY (K- K)
IF{K—NGRDER) 43.,.55,+3¢

42 Kil=K+1

DU e I=K1.NMGNDER
D0 48 J=K1WORIZR

46 ARRAY (I J)ZARKAY (] 4 d)=ARRAY (I K ) =anRAY (K J)/AFRAY (K K]
5¢ CONTINUE
62 RETURN

END
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