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The Calibration of an Optical Flat

by Interferometric Comparison to a Master Optical' Flat

Charles P. Reeve

" '

Introduction

The Dimensional Technology Section has been involved in the calibra-
tion of optical flats for many years. Present facilities are capable of
handling any flat whose diameter does not exceed 16 inches. All test
flats are calibrated by either the "Z-flat method" or the " flat method'!
The former method is a direct comparison of the test flat to an NBS master
flat whose surface profile is well kIlOwn. The latter method involves an
intercomparison between three flats, none of whose profiles need be known.
Most test flats are calibrated by the 2-flat method because it is simpler
and requires fewer measurements. The 3-flat method is used only for the
calibration of NBS master flats or for special calibrations.

The purpose of this report is to present a fairly detailed descrip-
tion of the procedures used in calibrating an optical flat by the 2-flat
method. Emphasis is on the geometrical aspects of the setup, the method
of obtaining data, the mathematics of data reduction, and the display of
the computed results. Some useful results from previous 3-flat calibra-
tions are also incorporated.

Preliminaries

Physical Properties

Normally an optical flat is used in the laboratory as a reference
plane in connection with some measurement process. The flat is disc-
shaped with parallel or nearly parallel surfaces, one or both of which
are of finished optical quality (within a few microinches of flatness
except for dubbing at the edges). The most common material for an opti-
cal flat is fused quartz, but many are made of glass or one of the newer
materials which has a very small coefficient of thermal expansion.

The surface of a fused quartz flat reflects only about 3% of the
incident light, so the surface is often coated to give a higher reflec-



tivity. Depending on the type and thickness of the coating, reflectivity
can be increased to nearly 100%. A flat with such a highly reflective
coating is usually referred to as a mirror. In defining the point where
a flat becomes a mirror , use is made of the fact that the closer the re-
flectivity of two interfering surfaces, the more distinct the fringes.
Thus any coated flat which is too reflective to give usable fringes, in
the judgement of the observer, against an uncoated master flat is con-
sidered to be a mirror and must be calibrated against a coated master
flat.

Most flats have two perpendicular diamete~s which are identified as
A-B and C-D by markings on the side. On a one-sided flat the finished
surface is indicated and on a two-sided flat the surfaces are usually
identified as 1 and 2 or T and B.

One-dimensional" Flatness

The objective of the 2-flat method is to measure the profile of the
test flat along the specified diameters. This is accomplished by individ-
ually comparing each test flat diameter to the known diameter of the appro-
priate master flat. The measurement , process yields an estimated profile for
each diameter of the test flat in the form of a discrete number of points

l' y 1

)' ... 

, (x
' y n

) where x
i denotes a position along the diameter and

y. denotes the measured deviation of the surface from some reference line

at the position x.. A sample set of points is given in figure 2. 1 where

n=7. The set of n points corresponding to a given diameter may be plotted
and connected by a smooth curve to give a perspective of the measured pro-
file along that diameter as shown in figure 2.

Although the surface of an optical flat is often used as a two-
dimensional reference plane, it is not calibrated in the two-dimensional
sense by the method described herein. This method is most accurately
described as a "one-dimensional" flatness measurement with the y. values
being reported as "deviations from a straight line

Choice of Profile Reference Line

The choice of which reference line to use in reporting deviations is
arbitrary. A set of deviations relative to one straight line can easily
be converted to deviations from another. Several definitions of the ref-
erence line have been used .at the National Bureau of Standards in recent
years. Some of these methods of defining the reference line and reporting
deviations are.
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(1) If the profile appears to be simply convex or concave let the
reference line pass through the end values, and if the deviation of the
center value from the line is li , then report the profile to be lI
microinches convex or lid" microinches concave, depending on the direction
of the curvature (fig. 2. 3).

(2) Let the reference line pass through the end values and report
the deviations from this line (fig. 2.4).

(3) Let the reference line pass through the end values, translate
it so that it passes through the center poin't', and report deviations from
this line (fig. 2. 5).

(4) Fit a "least squares" line through all values (with the possible
exception of the end values) and report deviations from this line (fig. 2. 6).

The first method is no longer used because it has the overtones of
being a certification rather than a calibration. The last three methods
report the measured profile relative to different lines, but they all
provide the same information. One cannot say that one reference line is
more correct than another. They are, all arbitrary and interchangeable.
The fourth method, however, is now being used because all measured values
have some weight in determining the reference line, and therefore an out-
lying measurement at some point would have a minimal effect on the devia-
tions from the line at other points.

Geometrical Model for 2-Flat Comparison

Method of Support

When a given diameter of the test flat is compared to the known master
diameter one flat is placed horizontally on top of the other so that the
two diameters are adjacent and lie in the same vertical plane as shown in
figure 3.1. The lower flat is supported on three thin pads which are equi-
distant from each other. Two of the pads lie on a line parallel to the
test diamet.er. Let the distance from each pad to the center be denoted
by ~r where r

L is the radius of the lower flat and kL is a constant
between zero and one.. Similarly, the upper flat is supported on the lower
flat by ~hree thin pads, each at a distance of kur

u from the center of the
upper flat. These three pads .are also equidistant and have the same ori-
entation as the pads supporting the lower flat. The pad farthest from
the diameter (indicated by +) is slightly thicker than the other two so
that the air space between the flats is wedge-shap.ed. The constants 
and ku are chosen in a way that will maximize the effectiveness of

the measurement system. Guidelines for determining these parameters are
discussed later.
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Coordinate System

It is necessary to assign a coordinate system to each diameter of
the test flat for the purpose of identifying points along the diameter
at which measurements of the surface profile are to be made. Readings
are taken at npositions along ea.ch diameter where n is usually odd.
These positions are denoted by (xl' ... , ) and are usually symmetric-

ally spaced about the center point at inch or half-inch intervals. 
the end positions fall at the extreme edge of the flat they are moved
one-sixteenth of an inch toward the cente The positions are usually
chosen to coincide with those used in previous calibrations. If the
flat has not previously been calibrated the positions are chosen as
deemed appropriate. The x

l position is at the A end of the A-B diameter
and the C end of the C-D diameter, and the x ' position is at the Band
D ends respectively.

Gravitational Bending

The freeform profile of an optical flat is defined as that form
which the flat would take in a zero-gravity environment. Since no such
environment yet exists in earthbound laboratories the distortion of opti-
cal flats by gravitational bending must be considered.

When a flat is supported on ,three pads, the test diameter will have
an apparent profile (a) which is the sum of its freeform profile (f) and
its bending profile (b). The bending profile is dependent on the support
radius of the pads and whether the diameter is on the top or bottom surface
of the flat. Many years ago Emerson (4)* showed experimentally that when
the support radius of the pads is set so that minimum bending occurs, then
the bending is small enough to be neglected. This result is discussed in
section 4. 2. The current calibration process calls for all test flats
and most master flats to be supported at the minimum bending radius. The
exception is discussed in section 5.

Some Results of 3-Flat Comparisons

Although the 3-flat method has not been described in detail, it has
been used to give some important results which are relevant to the func-
tioning of the 2-flatmethod. These results fall into two groups.

Calibration of NBS Master Flats

The 3-flat method is ideal for calibrating master flats because it

Figures in brackets indicate literature references listed at the end of
this paper.



RING SUPPORT AT EDGE

Figure 4.

~(O)

Figure 4

THREE POINT SUPPORT AT EDGE

Figure 4.

~ (0)

Figure 4. 



gives an "absolute" calibration. No master values are, needed and the
process is relatively free of systematic errors. The measurement scheme
is such that the bending profiles are removed leaving only the freeform
profiles. The more commonly used masters are recalibrated by this method
occasionally to check on their stability.

Empirical and Theoretical Bending

!n 1950 and 1954 three 10. 6 inch master flats (designated 111-1, 111-
and 111- 3) were involved in a thorough study headed by Emerson(4) where the
profiles and bending characteristics of tae flats were measured. Bending
profiles of flat 111- were determined for six different support radii.
Currently this is the only NBS master flat for which experimentally de-
rived bending corrections exist.

One result of the bending research was the discovery that minimum
bending along the test diameter occurs when the support pads are located
at . 70r from the center. This result is not surprising since the circle
of radius

O = 72= . 7071r

divides the mass of the flat into equal parts. The bending corrections
for the . 70r support were found to be negligible for the 10. 6 inch flat,
so it is usually assumed that when flats of this size or smaller are
supported at . 70r the bending is negligible and the apparent profile is
the same as the freeform profile.

Some theoretical bending values have been developed by Timoshenko (5)
for circular flats using the following two types of support:

Ring support at the edge

Figures 4. 1 and 4. 2 show a flat supported at the edge by a narrow
ring and the corresponding profile of diameter AA' . On the diameter AA' 
a distance r from the center, the bending deflection or sag w( r) is given
by the formula

w(r) = 
3pg(l-v ) (a -r )

l6Eh ~i:~
2 - r

J + 
(3 +v) 

2 - r (4-1)

where: a = radius (in.
h = thicknes~ (in.
v = Poisson s ratio (dimensionless)

pg = density (lb. fin. 

E = Young s modulus (lb. /in. 2



Note that if the ratio alh is large, then the first term greatly exceeds
the second, so w(r) can then be considered inversely proportional to the
square of the thickness.

Example For NBS master flat #1-3, a = 5. 3, h = 2. 5, = 0. 14,
E = 10. 15 x 10 , and pg = . 079876. By letting r = 0, the sag at the
center relative to the ring support is computed to be

weD) = .823 + . 174 = . 997 microinches.

Note that w(a) = O.

II. Three point support at the edge

Figures 4. 3 and 4. 4 show a flat supported at the edge on three points
and the corresponding profile of diameter BB' The formula for the bending
deflection is given only for r = Oas

weD) = . 0362 

where P = ~a q, D = Eh
3 112 (1-v

), and q = pgh.

( 4-

Combining terms then

weD) = 
1.3647pg(1-v )a (4-

Example For NBS master flat 111-3, using the same values as before,

weD) = 1. 329 microinches.

The value w(a) for the second example is obviously not equal to zero but
since the formula given is only for r = 0 it is unclear how to determine
the deflection for values of r different from zero.. Consequently, it is
impossible to directly compare this theoretical bending value with the
observed bending value obtained by Emerson.

These two theoretical formulae, though interesting, have little or
no application to the currentmeasuring process. Only by making certain
gross assumptions could they be applied and at the present time it is felt
that such assumptions cannot be justified.

The conclusion of this section then is that when an optical flat is
being used as a master it should be supported at . 70r where bending is
assumed to be negligible. It should be supported at another radius only
when experimentally obtained bending values have been established. 



that case the apparent profile of the master is computed by adding or
subtracting (whichever is appropriate) the bending profile to (or from)
the freeform profile.

Measurement Process

Calibration Facilities

The current optical flat calibration facilities are located in a
laboratory which is maintained at a const.ant temperature of 200 Celsius
and at a near constant humidity. In ord~r to keep the temperature stable
during the measurement process, only the person who is making the measure-
ments is allowed in the room. It is certain that thermal gradients do
exist within the optical flats, but it is assumed that they are small
enough in magnitude to be neglected; therefore, no attempt is made to
correct for temperature. It is also known that the daily variation in
atmospheric pressure affects the wavelength of light, but this effect is
negligible because only small differences in profile are measured.

The master and test flat assembly is encased in a cardboard and alum-
inum foil insulating shell and is set on ways which allow it to pass back
and forth under a Pulfrich viewer as shown in figures 5.1 and 5. 2. The
maximum travel on the ways is slightly more than 16 inches.

Choice of Master Flat and Support Radii

In determining the best setup to use for calibrating a given test
flat, the following facts must be considered:

(1) The test flat must be supported at seven-tenths of its own radius.

(2) The master flat must be supported at seven-tenths of its own
radius unless its bending corrections are known.

(3) Due to bending considerations it is best to have the heavier
flat on the bottom.

(4) If the weight of the upper flat will significantly bend the lower
flat then the support pads for the upper flat must be directly above the
support pads for the lower flat.

(5) NBS master flat fl1-3may be supported anywhere from . 25rM to
1. OOr

M if bending corrections are properly applied.

The guidelines in table A have evolved from these considerations.
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Preparation for Measurement

When two flats are set up for measurement, the alignment of the
assembly should be checked to be sure that the test diameter passes back
and forth directly under the viewer. When the lamp is turned on a series
of interference fringes will be observed running roughly parallel to the
diameter. It is desirable that these fringes be as nearly parallel to
the diameter as possible. A slight angular movement of the fringes can
be obtained by pressing lightly over one of the thin pads. It is then
very important to check the direction of the wedge by pressing lightly
over the thicker pad. This should make the fringe separation wider
the fringe separation becomes narrower it indicates that the "thick" pad
is actually thinner than the thin pads, and the resul ting sign reversal
will create errors in the computed values of the profile. This method
of increasing the fringe separation also spreads out the dark fringes
and makes them fuzzier. By controlling the thickness of the pads the
dark area of the fringe can be made just the right width to fit between
the crosshairs of the viewer. For helium yellow light and the Pulfrich
viewer the ideal distance between fringes is 200-300 micrometer units or

3 millimeters.

The points along the diameter at which measurements are to be made
are located with the aid of a paper ruler which has notches cut at the
proper x positions. The ruler is laid on top of the upper flat along side
the test diameter so that it appears with the fringes in the viewer as
shown in figure 5.

After all preparations have been completed the flats are allowed to
sit for several hours, or preferably overnight, so that they come to
thermal equilibrium. It is likely that during this time there will be a
slight angular and lateral movement of the fringes. This is allowable
because the effect of these changes is removed by the data reduction pro-
cess.

Procedure .for Taking Data

The fringe which most nearly c.oincides with the test diameter is chosen
as the primary fringe (fig. 5.4). The y position of this fringe is measured
at designated points along the diameter. Beginning at the position x

l the
crosshaiTs are moved by a micrometer dial until they are centered over
the primary fringe (fig. 5.3). The dial reading Y

l is recorded. The
assembly is then moved by the hand crank until the position x

2 is centered
under the viewer and the crosshairs are again centered over the fringe.
The reading Y

2 is recorded. This 
process is repeated until readings at

all n positions have been made. Then, without delay, the measurements
are repeated in reverse order so that a series of 2n measurements of the
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fringe profile is generated. Depending on the value of n, the measure-
ments may take up to 30 minutes to complete. These measurements can then
be said to constitute one cycle of data. The usual procedure is to take
one to four cycles of data .at a time which constitutes a!l!!!.. Directly
before and after each run several measurements of the, distance between
the primary fringe and one of the two adjacent fringes are made. This
distance is called the fringe separation and is denoted by " Two in-
dependent runs are made per diameter. It is desirable for these runs to
be at least two hours apart in order to test the stability of the fringe
pattern.

Mathematical Model of , Fringe Profile

In setting up a mathematical model for a run it is necessary to con-
sider that the fringes may drift significantly during the course of the
run and the observer may need to take a break of variable length between
cycles. The model which follows accounts for these factors. Within each
cycle the measurements should be equally spaced in time and completed as
quickly as possible. Over this period the fringe drift is assumed to belinear. Between cycles the observer may take a break because nothing is
assumed about the behavior of the fringes over that period of time. The
entire run, however, should be completed within a couple of hours if pos-
sible in order to reduce the number of long-term variations which might
arise.

of the fringe in micrometer u9its per unitth the j cycle, and let d . similarly denote
fringe at the x position. The movement of the fringe
is then a weighted average
depending on x

Irregular jumps in the fringe posit~on between cycles can easily be
modeled. Let aj be the distance the fringe moves at the x

l position be-

Assume that within a cycle the measurements are spaced by two units of
time, and for the sake of symmetry let the time t=O fall halfway between the
consecutive measurements at the x position. At t=O during the first cycle

let the, distance from the position x
i on the test diameter to the fringe be

given bye. , as shown in figure 5.6. (The fringes are shown as straight lines
for simplicity. The purpose of the model thert is to estimate these values
e. where i=l,n. At times before and after t=O the fringe position will drift,
as shown by the dotted lines, and the distance to the fringe will change.
This change can be modeled by assuming that at each end point the fringe has
a constant drift throughout the cycle. Let b. denote the rate of movement

time \ at the x
l position during

the rate of movement of the

at the x. position

of the end effects with the weighting function
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tween t=O for the first cycle and t=O for the j th cycle as 
shown in fig-

ure 5. 6. Let Cj similarly denote the distance the fringe has moved at
the x

n position, and note that a
=O. Again the movement of the fringe

at the x. position is a weighted average of the end effects. Let m be

the number of cycles per run and let y.. be the i th observation in the

cycle. Then the measurement equations take the form

ij = 8 i + (a
j + bj (Zi-Zn-1H

(=:: :~

X. - X

+ (c. + d. (Zi-Zn-l) J J xn - x

if l~i~n, and

(5-

2n-i+1
ij = 8Zn-i+l + (aj + bj (21.-2n-l) J 

X :

: x

zn-i+l
+(c. + d (Zi-Zn-l) J ' if n.::i.::Zn,J xn - x

where j=l,m and the e:
ij are independent error values from a distribution

with mean zero and variance 

This linear model can be solved by the usual method of least squares
Zn m 

(Le., minimizing )' Let the Znm observations be given by the
i=l j=l

vector

y = (Y ... Y ... Y

. .. 

) I ,n, m m n, (5-Z)

and let the n+4m-Z unknowns be given by the vector

(~) = (8
1 8Z ... 8n b1 d1 aZ b2 Cz dZ ... am bm em d

) I (5-

where 8 is nxl and ~ is (4m-Z)x1. Since a =O, they are not included



in the model.
are given by

Let P, q, u, and v be vectors of order n whose components

x-x.
::; x - x

i = I-

(5-4 )

i = (2n-
2i+l)P

i .' and

i = (2n-2i+l)q

where i=i,n. Let I be the identity matrix of ordern and let K be the
men matrix with l' s on the minor diagonal and 0' s elsewhere, 1. e. ,

0 0 

... 

0 10 0 1 0

::;

(5-
0 1
1 0

0 0
0 0

(Note that premultiplication of an nxl vector by K flips the vector.
the 2nm residuals be given by the vector

Let

E = (E
ll €2l ... E2n, l ... E . E 2m ... E2n, (5-

and let the (2nm)x(n+4m-2) matrix of coefficients be given by

p -

Kp Ku Kq Kv

The measurement equations are then given by

y= 

X(~)+ E (5-



The least squares estimation takes the form

E (y) = x(~) where

(5-

Var(y) = cr I

The normal equations are given by

x(~) = X'

y ,

and the estimates are given by

(5-10)

(D = ()('

)(,y = (~, ~) )('

(5-11)

where V is nxn, U is n:x:(4m-Z), and W is (4m-Z):x:(4m-Z).
values of the observations are given by

The predicted

;,.xO) (5-lZ)

and the deviations by

(5-13)

The estimate of cr is given by

s = d/ (Znm-n-4m+Z) (5-14)

(At this point the above parameters are e:xpresSed in micrometer units.

In summary, the results of this fitting procedure which are of primary

interest are the set of nestimated fringe positions, 8
i' and the estimated

standard deviation of a single measurement, s.

Computation of Test Flat Profile

Each estimated fringe profile is now converted to an estimate of the
air space between the flats along the given diameter. Figure 5. 5 shows a
cross section .of the setup which is cut perpendicular to the x axis at
the position xi' The separation d

i at the position :X:i is related to the
fringe profile 8

i by



i = d (5-15)

where d is the separation of the flats along the primary fri~ge, and A

is the wavelength of the monochromatic light. (The d
i values are now

expressed in microinches. The separation d. is also related to the pro-

files of the two flats. Figure 5. 7 shows a cross-section of the setup
along the test diameter as viewed horizontally with the upper flat being
designated U and the lower flat L. For the~urposes here it does not

matter which is the test flat and which is the master. Let rU and rL be
parallel auxiliary lines separated by an arbitrary distance h which pass
through the upper and lower flats respectively, and for each line let the
direction toward the other line be the positive direction. The adjacent
profiles of the upper and lower flats can then be taken as deviations

i and ai from the 
ll.nes r and r respectively. At every position x

the relation between the parameters takes the form

- ,

h = a
i + ai + d

(5-16)

Substitution of the expression for d
i in equation 5-

15 into equation 5-

gives the following expression for the sum of the apparent profiles of the
two flats:

L A6
i + a i = 

+ h - d (5-17)

The value of h was arbitrary so it may be set equal to d
.o'

Then

L A6
i + a i = 

(5-18)

Let the vector of profile values a
i + ai be denoted by aI for the first

run and a
ll 

for the second run. Intuitively, the difference a
I - a

should
be linear in x because the flats are rigid bodies. A statistical test is
performed under this as.sumption in order to determine if there is a signi-
ficant between-run .error term. If such a term i.s found to be significant
then the measurement process is said to be "not in control" and the mea-
surements are repeated.

The test is implemented as follows. Let s
I and sIr be the respective

standard deviations of a single measurement of runs 1 and 2, given in eq-

Z.o
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uation 5- , which have been converted to micro inches , and let

z = a
I - a

(5-19)

A constant term a
O and .a linear term al are removed from the vector of z

values as follows: Let

and" = (:~)'x =

The least squares estimation of a takes the form

and
E(z) = XI)

Var(z) = Va

where V is as given in equation 5-11.
written as

The total variance a
t can be

t = a w + a2 . 2 .where a
w J.S the 

within-run variance and a J.8 the between-run variance.
The estimates a are of no importance. The vector of residuals is given

d = z - z = (I - X(X' X) - )z,

and the estimate of the total variance is given by

d '
"" n-

The within-run variance is estimated by

w = s1 + s

The ratio

S = s/s

. ~

(5-20)

(5-21)

(5-22)

(5-23)

(5-24)

(5-25)

(5-26)



has an F distribution with (n- 4nm.-2n-8m+4) degrees of freedom.
the level of significance of the test t.o be . 01, the value

Taking

:::: F . 99 (n- 4nm-2n-8m+4) (5-27)

is obtained from table B. If S ;:. F then the between-run error, cr~, is
determined to be significant and the system is "not in control"

$. F then the between-run error is determined to be not significant and
the mean of the two runs,

I + a

' '

:::: 2
(5-28)

is computed and separated into components,

:::: a + a (5-29)

where a and a are the respective apparent profiles .of the test flat
and master flat. The master flat profile is subtracted to give

:::: a - a (5-30)

Recall from section 3. 3 that if a bending correct10n. 1S used in
determining a , then the sign of b depends on whether the master flat
is on the top or bottom. If the bending profile of the master flat is
unknown then it is usually assumed to be zero provided the master flat
is supported at 0. 70r

The com.puted profile a also contains an unknown bending value b 
If the test flat is used in the orientation opposite the one in which it
was calibrated, there will be a difference in the respective apparent

profiles of :t2b This difference can usually be assumed negligible
when the flat is supported at 0. 70r

The exact degree of bending in a given flat is highly dependent on
its radius and thickness (see section 4.2). There is evidence that flats
which are 10" or less in diameter have negligible bending when supported
at 0. 70r. For example, when the NBS 10. 6" master flat is supported at

70r the maximum bending along its diameter has been shown experiment-
ally to be 0. 02 microinches.

The values a given in equation 5-30 are referenced to some arbi-

trary line. The final profile values :T which are referenced .to the
least squares line through the profile must be determined. Frequently
the end values of the profile will falloff sharply if measurements



were made near the edge of the flat where there is dubbing. If these
values were equally weighted they might distort the appearance of flat-
ness along the diameter. To account for this possibility a diagonal
weighting matrix,

I 0

w = (5-31)

0 w
fl'

is introduced where w =O if the end points are in the dubbing and

n =1 if not. Let

= wx (5-32)

where X is as defined in equation 5-20.
values is then given by

The final vector of profile

:T = (I - X (X' X ) - X' ) aT = Qaw w (5-33)

Error Analysis

The uncertainty of the computed profile values can be expressed as
the sum of random and systematic components of error. The random com-
ponent is taken to be the three standard deviation limit for random
error. the systematic component is taken to be the sum of all other
known effects which contribute error to the system.

Let s , the pooled standard deviation of a single measurement (in

microinches), be estimated from all runs made on the diameters of the
test flat. From equations 5-18 and 5-11,

Var(a ) = Var(a ) = Vs (5-34)

and

Var(a) = Var ( + Var ( = V (f) (5-35)

From equation 5-30, 
Var(a ) = Var(a) + Var(a ) = Var(a)= V (f) (5-36)



the values a are constants. From equation 5-33

Var(:T) = Q (var(a ) J Q' = Q (v(i9J Q' = QVQ' (f),
therefore the standard deviation 0 t e 1 profile value of the test
flat is

(5-37)

since

*T =

(QVQ '

) . .

(5-38)

Two non-negligible sources of systematic error are the uncertainty
of the master flat values and the non-linearity of the ways which move
the flats back and forth under the viewer. Let be the largest uncer-

tainty of the master flat values (including bending uncertainties), and
let ~ be the maximum error caused by the non-linearity of the ways. Fo.
the current setup the ways are believed to be straight to within . 0002
inch which corresponds to . 47 mi,crometer units. This error is converted
to , test flat profile error by

= .

47 

max
(5-39)

where r is the maxiInum fringe sep.aration for all runs on the test flatmax
diameters. All other sources of systematic error are assumed to be neg-
ligible; therefore, the limit for total systematic error is

E=E (5-40)

and the total uncertainty of the computed profile values is

*r = 3s*T + Ei a
(5-41)

One shortcoming of this calibration process is its lack of strict
statistical controls. The test for between-run variance given in sec-
tion 5. 6, is not broad enough to detect all possible errors which might
occur. A test of the "computed" standard deviation against an "accepted"
standard deviation is not possible since each calibration involves certain
fac tors which make it unique. Two such factors are the fringe sharpness,
which varies depending on the fringe separation and the reflective prop-
ertiesof the flats, and the skill of the particular observer in centering
the fringe in the crosshairs of the viewer. Over many years these factors



have combined to give standard deviations ofa single measurement bet~een
05 and . 25 microinches. In the absence of a strict statistical test,
the standard deviation is accepted if it lies within this range.

Since there is no check standard in the process, a change in the
master values could go undetected until the master itself is recalibrated.
To guard against the possibility of such an error the computed profile of
the test flat is checked against a previous calibration if one e~ists.
There is strong evidence that no significant long-term change in the pro-
file of master flats occurs when used at ~ temperature of 20oC. The NBS
10. 6 inch master flat, for e~ample, has Heen calibrated four times over
a period of 18 years and the ma~imum disagreement in values is . 13 micro-
inch. This difference is easily within the limits of random measurement
error. To assure their stability, all NBS master flats are periodically
calibrated by the 3-flat method.

Although most of the above controls are not rigid, they have proven
to be adequate for protection against gross errors.

Graphical Display of Profiles

Ideally the calibration of an optical flat along a given diameter
would yield a continuous curve which represents the profile of the flat
along the diameter. Such a calibration could be accomplished under the
current measurement system by letting n take on a very large value, but
the data-taking process would be quite laborious for the observer. 
general, high quality optical flats have smooth profiles which can be
adequately represented by measuring the profile at a few points and con-
necting the points with a smooth curve. In pre-computer days a hand
drawn graph of each diameter was sometimes submitted as a supplement to
the Report of Calibration. Such a graph was useful in giving the user a
good idea of the profile at a glance. The present computer facilities
allow a graph of each diameter to be plotted as part of the data reduc-
tion process.

One good method of fitting a smooth curve to a discrete set of
points involves the use of cubic spline functions. , Let the set of points

((~. ,

), i=l,nJ represent the profile of a diameter. In each of the1. 
interval

~ ((~

i+l

) ,

i=l, lJ a cubicpolynominal is fit to the points
subject to the C.ondition that the cubic between points ~

l and ~i must
agree with the cubic between points ~

i and ~i+l at the point :X:i in their
first and second derivatives. Also, either the first or second deriva-
tives, but not both, must be specified at the end points ~

l and ~
For

this problem it seems most natural to set the second derivatives equal to



zero. The resulting equations form a tridiagonal system of 3n-3 equations
in 3n-3 unknowns. Methods for formulating and solving this system are
given in Ahlberg (1) and UNIVAC (6). Once the coefficients of the n-
cubics are obtained the interpolated value at a given point, X

o is deter-
mined by plugging the value of X

o into the appropriate cubic.

Interpolated values were computed at 201 equally spaced points for
each of the diameters in the example which follows (fig. 7.3). The stars
indicate the actual measured values. The interpolated values are connected
by straight lines, but due to their close~~ss they give the appearance of
a smooth, continuous curve.

Example

The following example is presented in order to illustrate the cali-
bration process. An eight inch single surface test flat identified as
L9210 was calibrated along its A-Band and C-D diameters. As given in
section 5. 2, the flat was supported on top of the NBS 10. 6 inch master
with both sets of support pads being placed at a radius of 0. 70 (4 inches)~

8 inches. This necessitated using the empirically derived bending cor-
rections of the master flat for this support radius. Three cycles of mea-
surements were made per run at 11 positions along each diameter. A sample
data sheet for one run is given in figure 7.1. The data reduction process
was then carried out as shown below where the step numbers correspond to
those given in figure 7.

Step

(1)

(2)

(3)

(4)

(5)

(6)

(7) 

(8)

(9)

Operation Reference

Choose positions along x axis sec. 3.

Compute sum of upper and lower flat
profiles (in microinches) for runs I and
II from mathematical model

sec. 5. 5., 5.
(eq. 5-11 & 5-18)

Compute s
I and sII for the two runs

Compute (run I profile)-(run II profile)

(eq. 5-14)

(eq. 5-19)

Compute residuals from straight line fit (eq. 5-23)

(eq. 5-24)Compute S
t for straight line fit

Compute the ~atio s l (s

Obtain F . 99 value from table B

(eq. 5-26)

(eq. 5-27)

If good F test, compute mean of profiles
from two runs

(eq. 5-28)



Side

1 'l
2 (i)

Diameter

OPTIcAL FLAT CALIBRATION - 1 FLAT VS. MASTER

Run COI1IIIIenU: 9.' A M.

C-D 
Inch Test Flat 

Inch Maste1:' Flat 

'lest Flat on: bottom

Test Flat Lot '12. 

Observer 

€. 

IE rbe.,...

Date "I- / 2. / 7+
'1l. Io I\\~

\\\

Support Radius

----7 1 (+-):: 2. 

h\\\\\\

~\\~ ----

1 (

:: 

11"

!!2. pause during a cycle. .Q! to pause between cycles.

Pos.
(inches)

y,t.:,

z..

~i.. /I

3X-"
4- "
41.z..

;".

1 K"
.1 '

~,.

Cycle 1

353 1i1.Jll
32.1 32.2

l't I

2- ..11L
25f l:.5.J..
22.'- 22.3

ill:.. .1il.
/I J1J...

3 5" ..l::L

Cycle 2

l1::f.. 34r1
.3t-cr 33'r

32-1 J If

28 2.82-

2"+ l"~
z.+S 24-2-
2.1'1 2.14-

.HL .1fL

...Ll..fL I 0 

..1::L2.0 2-3

Cycle 3

35'0 34-7

Jff. 
3.3 4-

32.1

..zJ.1::. 
28' 

2..' 1.6 

2.# 2.1-'
loll Z08

..!1:L .JJ:..f..

..:JJ... J1..
2f.. ...J:.l..

...J:L ..J.L

Axe the end positions in the d.ubbing? 

Fringe 1: 2..8tJ
.11L 

2.77
Fringe 2: JL 

Difference: lID k..l!l:--
Compute
Fringe
Separation

Average Difference: z., 2... 0

Figure 7.

Cycle 4

---;J

l1SCOMM,NRS,OC 3/7'"



.;.'. '. ,

(1) (2) (2) (4)

Pos

06 19. 18 8.
18.

50 17. 72 9.
50 15. 97 8.
50 14.91 9.

4 . 00 13 . 88 8. 87
12.

50 8.55 5.
50 6. 20 4.
50 2.
94 1. 78 2.

I = . 144
(3)

u = . 135

10.
10.

1.51

- .

A-B Diameter

(5) (9) (10) (11) (12) (14) (16)

*T +E

13. 13. 048
13. 13. 1.54 031
13. 13. 034
12. 12. 036
12. 11.69 037
11.38 11. 1.48 037
10. 32., 037

036
034
031

1.98 1.23 048

(6)

s = . 148 (13) s = ((. 144) +(.135) 

= .

137

p +(.

132) 2

+(.

136) 2 ) /4

(7) 
2 S

t 2 0219
= 0 560390 

I + s

(8) F (9, 90) = 2.

Pos

1.50

15 9.
09 9.
74 9.

92 9.
7. 71 9.

92 8.
4..67 6.

40 5.
1.44 3.
1.03 2.

132

136
I =

rI =

I + s

W = . 025 )1

(15) EM = . 174 )1

= .

199 )1

C-D Diameter

*T 3s *T +E

10. 10. 1.33 048
10. 10. 031
10. 034

-3a4 036
037
037
037

-3. 036
3. 94 034
4 . 1. 06 031

048

t = . 321 *The runs were not repeated even
though this number exceeds the
maximum F ratio 2.62. There was
apparently a bad reading in the
dubbing area at the 7. 94 position
on the x axis as indicated by the
value of . 29 in the "d" column.

1030 ... 2 87*. 0359 

Figure 7. 
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Figure 7. 3



(10)

(11)

(12)

(13)

(14)

(15)

(16)

Obtain profile values for master flat

Subtract master profile from mean profile (eq. 5-30)

(eq. 5-33)Compute final profile values relative to
least squares line

Compute pooled standard deviation of single
measurement

sec. 5. 7 .

. '

Compute standard deviation of final profile
values

(eq. 5-38)

Compute limits for systematic error sec. 5.
(eq. 5-39 & 5-40)

(eq. 5-41)Compute total uncertainty for final values

A smooth curve was fit to each set of values in step (12) by the method
described in section 6. The graphs are given in figure 7.

Conclusion

The data reduction part of the calibration process is now fully com-
puterized. The output includes the usual Report of Calibration plus a
plot of the profile of each diameter.

There are .a couple of pitfalls to be avoided in using the calibratedflat. First, the values on the Report of Caiibration are valid only when
the flat is supported in the exact manner as it was during calibration.
If the flat is supported in a different manner (such as a ring support
around the edge) then it will diStort to some extent due to gravitational
bending. In that case the user must determine the bending corrections
for himself unless he chooses to ignore them. Second, if the flat is
properly supported on three pads as described in sections 3. 1., 4.2., and

2. then minimum bending occurs only along those diameters which are par-
allel to the lines which connect the pads. This means that in the usual
case where the A-B and C-D diameters are perpendicular the reported values
cannot b~ legitimately used simultaneously. This is illustrated in fig-
ure 8.1. One method of overcoming this difficulty would be to measure
the profile along diameters A-B, C-D, and E-F which are 600 apart as shown
in figure 8.

The main weakness of this calibration process is that it is more "one-dimensional" than " two-dimensional" (An example of a true two-dimensional
calibration using an entirely different technique is given by Dew (2).



BENDING PROPERTIES FOR . 70 R SUPPORT

A- MINIMUM BENDING
- D NOT MINIMUM BENDING

Figure 8.

A-a, C-D , E-F MINIMUM BENDING

\ . 

k';./~~

/ \

. II \

Figure 8.



Despite this shortcoming, the process does give a high degree of measure-
ment accuracy and it has sufficiently met the needs of a large number of
optical flat users for many years.

I wish to ~cknowledge three people who were of great assistance to me
in the writing of this paper. I thank Mr. Ralph C. Veale of the Dimensional
Technology Section who spent much time acquainting me with the many facets
of this complex measurement process. I also thank Mr. Joseph M. Cameron of
the Office of Measurement Services for hi~ many helpful suggestions on
improving the paper. Finally, I thank Dr. James J. Filliben of the
Statistical Engineering Laboratory for suggesting the mathematical model
and statistical test which appear in sections 5. 5. and 5.6. 



Table A. Guide for setting up flats

Test flat
diameter

Te st flat
position

Which
master?,. ,

Master sup-
port radius

App ly mas ter

bending corr.

?' 

0" - top 10. 70r

70r7" - 10. top 10. yes

12" either 12. 25"

either 16"

70r

70r16"

Odd sizes over 10. 6" are calibrated either by overlapping or by a 3-flat com-
parison with two other flats of the . same size. The method of overlapping in-
volves calibrating the central segment and the two end segments separately
and then fitting them together.

* Test flat diameter may vary slightly from master flat diameter. Since
bending values are not known for these two master flats, an error term
must be added to the master flat uncertainty if its support radius is
not exactly . 70r



, . .

Table Percentiles the distribution

Values F . (n-2 , 4mn-2n- 8m+4) * for certain and

1.99
1.97 1. 95

1.94 1. 92

1.92 1.90
1.97 1.90 1.88

*Values . taken from the twelfth edition of C. C. Standard Mathematical
Tables, with some interpolation.
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