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Introduction

The indexing table plays a vital role in the calibration of angle

standards(1 2, 3) 1 . An object which is wrung or clamped to an indexing
table can be rotated through certain angles very precisely. The smal-
lest angular increment varies with different indexing taqles but is most
commonly one degree. The deviation from nominal of any angular interval
in a high quality indexing table is usually no more than 0. 25 second,
and the short term repeatability of any setting is usually less than

05 second.

" , . .

In most angular calibrations the indexing table plays one of three
roles 

(1) Is used simply to rotate an obj ect through some nominal angIe
whose precise value need not be known.

(2) Is calibrated simultaneously with an angular standard in aroutine calibration process. 
(3) Is used in the calibration of an angular st,andard where some
of its angles need to be known precisely beforehand.

The second role is seen in the ca1i.bration of polygons. ' For example
a 300 polygon mag be calibrated b~ comparing each of its twelve angles
to the twelve 30 angles of the iridexing table and then computing ' a
least squares solution for the 24 unknowns. The third role occurs when
it is impossible or impractical to employ a self-calibrating algorithm
such as in the calibration of a small angle block (less than 150) by
direct comparison to a known interval of an indexing tabl,? In that
case it is necessary to do a preliminary calibration of the indexing
table angle. One way of accomplishing this is by applying a measure-
ment algorithm usually called the "method of subdivision The
mathematics of this method are presented in great detail.

., , " ,

2 . The Method , of Subdivision

Angles on the

.' 

same indexing table cannot easily be compared with
each other, so it is more convenient to calibrate two indexing tables
(denoted by A and B) simultaneously . That way each angle on one table
can be , compared with several on the other to give a redundant set of
observations. This idea is incorpo!ated in the method of subdivision
which consists ,of two types of measurement designs

, "

complete closure
and "partial closure The complete closure design is used to ,subdivide

Figures in ' brackets indicate :t.id~rattire references at the end of the
paper.



the entire 360 degrees of each table intofLo equal segments A

!., . . .,

and B

' ' . . 

., B respectively whereO n
o n
E Ai - E Bi - 3600 .i-l i""l

Then by partial closure one seg~nt one~h table, say Al ~~ 81' i$

" .

subdivided iota n
1 equal segments A

' . .

., A and 8
1' . . .. B, n1 n

respectively where

l n
t - Al and E B

po Bt-l i-I

.' ,

Similarly A
l an4 B1 can be divided int.on

~ equal segments AI' . . . 
an4 8

1' r . 
" B respectiv~1y 

~~.

2 n
2 n

~.. . ",,

.. A1 and ~ 8 '" 8i'F1 i-I'

Tnis pra~e8s can b~ continued ~ntil th. desired level is rea~hed.

As an e~ample, if it were desired to k~ow the va1~ .of the 0.0 -, 10
intervaloneacbtable. they could ))e calibrated using the camplete
closure design with nO '" 12 . and two partia~ closure designs with nl ~6
and n2 '" 5. Thus each 300 interval wou14 be calibrated. then Qo - 300
on ea~h table would be subdivide4 into 5.0 intervals, and the 00 - 5

interval on each table wauldbe subdivided' into 10 intervals. This
subdivisian is illustrated in figure 1.

It should be noted that .only those increments which are c.ommon to
both tables can be calibrated. For tnfftance , if table A has a smallest
increment pf ope degree and table ~ bas a smallest in~re1Rent of ten
minutes. then t;he sroalles't inctement which can be ca1i))ratecl on each
tab~e i8 pne degree.
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Preparation for Mea~urement

In preparation far measurement table A sho\.lld be mounted on table B
as peady concentric as possib~e. It is then helpflJl if this assembly
is mounted concentrically On table ~ whicp is either an indexing table
or a rotary table. This table is not to be calibrated but serves only
to rotate the other two tables between sets pf measurements as require4
by the measurement design. A mirrar if:; then mounted on table A approxi-
mately at the center. An autocollimator is mountep so that the face of
the mirror is c~ntered in its field .of view. Adjustments are made $0
that the autocollimator reading is near the center of i~s scale when
each of the tables is set in i~s ~era posi~ian. The autocol1imatar
shoul4 be .adjusted so that it reads hori~antal angle only.

If table C is not available then either an adjustable mirror must
be used or the autocollimator must be shifted between sets of measure-
ments. The whole assembly should be clamped to a surface plate as shown
in figur~ 2. The process of clamping the tabl,s should be done with a
minimu~ pf distortion, Ahoad shauld be construc~ed over the autocolli-
matpr and m;l'rror sa that no outside light caq 1nterfere with the auto...
~allimatar reading,

The assembly is then ready far the measurement Process which in-
v()J.ves only ttle appropriate rotations .of the 4=ables. Tables A and 8
are always ratated in opposite dire~tions through equal nominal angles.
The observed change in autac()llimatpr reading is the~ equal to the
pifferencebetween the true values of ~he two angles, This is illustra-
ted in f~gure 3 far the angles A

l and 81 whtch are namina11y N with
deviations a

l and al respectively.

Com lete Closure Uesi

Let tables A and B each be initially subdivided into n intervals of
3QO/n degrees, and let the deviations from nomina~ of the intervals be
denated by the vectars a;:: (Il " , a.

)' 

at'\d a = (al , . . I3
respectively. If every a. Were camparedwith every a the result would be

meaauJ.'ements on 20 unknowns. In cases of large n this may require
more measurements than ~ould be Practical, If every a were compared
with only m of the 13 t s . where m~n. then there would be mn measurements
on 2n unknowns. so for m ~ 2 there would be redundancy in the system.
A convenient measurement algorithm is to take n blocks .of m differences
of the form
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1 - 13

2 - 13

2 - 13

3 - 13

. . .,

n - I3n-1
1 - I3

a - a tn+ 1 -13
111+2 . m-l m-2

(note that 13
2n-1 = n-1) where with eac;:h ~uc~~eding block th~ as\fbacri

is increased by one and the 13 subscript by two. The i' black of m
differences is generated by taking ntH obaervations accor4ing to the
following scheme:

il :;: 6
i + e:

i2 

:;: ~

i + ai - 1321-1 + e:

Y i3 

:;: ~

i + ai + ai+1 - 132i-l - 132i + &

y i,m+l
~. + a

. +

+ a
i+m-l - 132i-l

- . 

. - 13
2i+m-2 + &111+1

where ~ i is the initial:t;'eading of the autQcatlimator and the & ' s are

independent error valqes from a distribution whose mean is ~ero and
whose variance is (1 The subscriptsQf 13 are reduced modulo n. The
complete closure design will be denoted by C(n,m).

Before proceeding, a word should be aaid about sign convention.
This model aS$umes that the two tables are numbered in opposite directions,
and that increasing the angle of table A g~ves a positive deflection of
the autocollimator. If the tables do not conform try this cQnventian,
they can be made to conform by reversing the assignment of the angles
or by reversing the sign of the observations or both.th 

The new random variables for the i block, ~
i - (z il' . . . z

are formed by



il = YiZ - Yi1 = ai - 82i-l + EZ - E

iZ = Yi3 - Yi2 = ai+l - I3Zi + EJ - E

im - Y m+l - Y im = ai+m-l - 132i+m-2 + €m+l - E

or in matrix notation ~
i - My i where

~ince Var(y i) - a I
m+1' then Var(~

) - a V
m where

2 -1 0 
-1 2 -1 0

-MM' - 0 -1 2-f

0 0 

. . 

. -1

Let ~ - (~
1 z

' . . z

form
Then the least squares estimati.on takes the

E (z) . X (:)



where

D pm n -D pm n

D pm n -D pm n

D p
n-l

m n
-D pn-2
m n 

and P = (I J where I is the m x midentity matrix andm m,
is the m x (n-m) zero matrix, and p

l i$ the n x n permutation

matrix which is given by

the full variance-covariance matrix of the observations is given by
the nm x block diagonal matrix

w =

Then

m -1

where



m-1 m-2
m-1 2 (m- l) 2 (m-2)
m-2 2 (m- 3 (m-2)

m+1

2 (m- m-1
m-1

The normal equations (incorporating the restraints

i-1 i-1
~. = 0) take the form

(;:W

~. ~ 

(fJ ~ (X'

where Al .and A2 are Lagrangian multipliers entering in the minimization
process and 1 - (1 1 

. . 

. 1)' (The normal equations ar.e developed
further in Appendix A in a form suitable for computer programming.

The estimates are given by

X ,1 0
0 1

l' 0 
0 l' 

( ~: ; 

n r ~'

where C is the variance-covariance matrix of the estimates.



The predicted values are given by

z =

and the deviations by

d - z - z.

The estimate .of (1 is given by

(1 = ' d ' d! (mn-2n+2)

and the standard deviation of theeatiI!lat~s by

- & 

and
8 = j+n, j+n'

the ' coVariance of 
i and 8

iso given by

(1 a C
i, n+j 

For the cumulative values let

cp - E Qi andi-1 k - ?: 8J.-1

and



The standard deviations are given by

0 O

k - j=l

. .

J.)
and

'" 

1/i i-l j=l n+i, n+j" "
" ..If

There is no error entering from the restraints since they
represent an exact relationship.

Partial Closure Design

Let A
i and Bi be two calibrated intervals of the same namina1

angle on tables A and B respectively and let their observed deviations
from nominal be given by m

A and mB respectively. Let the 
corresponding

variance-covariance matrix of the values be given by

The intervals may be subdivided into n segments denoted by

& - (&

1 . . 
. a

)' 

and a - cr\ . . a )' by using the partial closure

design under the restraint that

E&. = mi=l 
and L: s. - mB .i= 1 

Each a can be compared to each 8 so that there are n measurements
of the 2n unknowns. One measurement algorithm which is conVenient
forms the 2n-l groups of differences

1 " a I. (~~ = ::"1 
r. t . . ., al - 8

2 - 8

Z - 8

3 - 8

, . . ., (~

n - 8 1 J

n-l n-l n - 8n-l
a - 



where the central block has n differences and the adjacent b10ck~'
decrease in size by 1 until the end blocks have only 1 difference.
Each block of k differences requires k+ 1 measurements. ror e"amp1e
the central block is generated by n+1 measurements according to the
fallowing scheme:

nl = An + 8

Y .. n2 = A
n + a1 - 81 + 8

. .

- A

+ . . 

. + a - 8

- . 

. - 8 + 8
n+1 -

where A is the initial reading of the autocollimator and ~he& ' s

are independent error values from a distribution whose mean is zero

and whose variance is o This partial closure design will be deBated

by P(n). The new random variables z = (z 

. . 

. z )' are fo~ed byn nn

n1 - Yn2 - Ynl = al - 81 + 82 - 8

n2 - Yn3 - Yn2 - a2 - 82 + 83 - 8

nn - Y n+1 - Ynn = an - 8n + 8n+1 - 8

or in matrix notation z = My where

0 -1

M -

Since Var(Y ) - a I
n+1' then Var(z

) = a V
n where Vn is defined

as in the previous section.



Let z ' = (zi zi . . . zin - 1) be the complete set of difference

measurement.s. The size of the vector zk is k JC 1 if k .::. n. and (2n-k) x 1
if k .~ n, Corresponding to each z

k is a variance-covariance matrix

k whic11 is 
kx k if k ~n and (2n-k) x (2n-k) if k ~ n. For

k - 1 2, and 3 the .ffiatrices take the form

1 = (2), V2 = (-i -

~),

3 = (-L~-n

The least squares estimation takes the form

E(z) - X (i)

where

X -

-D pn-l
1 n

-D pn- 2

2 n

-D . pn n

D pn-1 n n-l

n,..1
1 n

and Dk = (Ik 8 , n-k where I
k' 8 , n-k' and p~ are defined as .in the

previous section. The variance-covariance matrix of observations is
given by



W =:

.;,

n.,...l,

whereW is a block diagonal matrix whose blocks vary in size from
1 x 1 ~o n x n. Then

..1

,..1

,..1W -

V-In-1

. -1

where v~l is the same as in the previaus section.

V~l 
== f 

(1J, v;1 ~. v;l 

The normal equations (incorporating the restraints

i - mA and
i-1

~ B

== ~) 

take the form

i=l

For eump,le,

. '.. 



i' 0 0
i' 0 ~J OJ ~ lX'

where A
l' A2' anA i are defined as before. 

(The normal equatians ~re

developed further in Appendix B in a form. suitable for computer
programming. )

The estimates ~re given by

'"'

x i -1 

0 i ' M '

. ,

i' 0 It. - 
0 i' O ,

:) 

, r~l

,,' ." "

wQere C is the variance-covariance mat,.r1x of the estimates.

The predicted values are given by

~ ~ X 

and the devi~tions by

...

d - 2 ... Z.

The es t ima te 0 f 0 is given by

... 

' -1 0::: . d' W dl (n -2n+2).

Since the ranqom errar entering through the restraints is non-2ero it
must be tak,n into account when co~puting the tot~l standard deviatipn
of the estirrtates. Th~ complete e~pr~ssion for the variances and
coyariancea of the estimates is &iven by

... 2 aVar - 0 C ~ (8 b) S (

)' 

Thus



A2 2 A2 2 ~2' 0" - 0 C + a + h . 0 + 2ai II1A lI1 .~ m II1~2 AZ A2 A ' :10" ;: 0 +n ' +n + a + 0 + b + 2a', J n m A II1 m A B '

and the cov~riance of a
i and B 

j i$~2 ~2 
0". - 0" C + a ~ 0" + (a b + a . b ,j i,n+~ ~ n+j m 1. n+j n J :L ,m II1

" .' ,

A2,
+ b

~ ,

For the c1,1111u1ative value", let

a' " k i "

k = .E (X i and 'Il '" E Bi-I i-1

Th~ variances are given by

,. 

&Z 

~ j

t Cij + (it aJ ""'4
. + (~b

Y &~ ..

'. 

2(i a1(tl b

) " "",!!

' and

k ~ .2 

~. j

t Ci+n:- j+n +

(ttHUY ~;A + Ct, tfnY~~ 
2 Ct.t+nh~l ifn

) ~

A"JI .



Sources of Error

In the mathematical models just described the only error~;accounted
for were the random errors of measurement and the propagationof tneE;e
errors into the following series. The error of a single measuJ::ement.
which was given as cr is the combination of random errors from three
sources:

random setting error in indexing table A

random setting error in inde~ing table B

random error of the autocollimator reading

Since SOme of the physical parameters of the system are unknown and
cannot be ,modeled, there are systematic errors in ,the measured values.
These probably are small , but it has not been determined if they are
negligible. Factors such as the aut;ocollimator reading being 1Jiased
by vertical angle, imperfections in the mirror , effects of varying
temperature , and foreign particles in the setting mechanisms .of the
indexing tables can influence the -accuracy of calibrated values There
is evidence that over a short period of time , such as a week " that these
effects are negligible in comparison to the random errors.

There are several reasons why long term changes in the indexing
table angles may not be negligible. If the table is move~ from one
location to another it may be clamped down in a different manner thus
resulting in slight distortions. The grease Which lubricates. the
tables may collect small amounts of dus.t over long p, iods of time and
as this dust works its way into the teeth of t~e tables i~ causes a
variability in the setting of different angles.

Over a period of years the values of two indexing tables at; NBS
have been observed to drift slowly, but whenever .a table was dismantled
cleaned , and reassembled there was usually a significant change in the
angular values. The conclusion to be drawn is that over short periods
of time systematic errors can probably be ignored while over longer
periods of time, such as several months, they become significant and it
is better to recalibrate the table ,before using it.

Applications of DesignS

As described in section 2 , a combination of the two types of designs
allows the calibration of. intervals of various sizes by subdivision.
However, each design can be useful by itself When the .complete
closure design is used alone, it- subdivides the two tables into n
equal angles each. The standard deviation of all the angles on indexing
table A are equal , and likewise for indexing table B.



Ta1Jle 1 lists .the standard deviation coefficients , k
A and kB' ofthe angles for all values of n up to 36 and for all appropriate values

of m. Note that the standard devtatipn coefficients for the angles
on inde~ing tables A and n are not always equal for a given design~ The
standard devfatidns'of the individua~ angles are given by S

t ='k
A '

s' 'arid

a = kB s where s is the estimated standard deviation of a singHr .

measurement.

The standard deviationcoefftcierits for the cumulative angles are
also given. They are the max:i.mum v~lues of the k' s which correspond
to all possible sums of consec4tfve'angles. '

Table 1 is given pr!marily as an aid indetetmining w4ich value of;
m to use when subdividing two indexing tables into 0, ' equal parts ' each.
Assuming that there is a desired upper limit for the standard deviation
of eaCli angle (s ) and that an appro~imate value of the observed max 
standard deviation (s) is knpwo, theIl-any value of m is acceptabl~ - 
whose corres ondin k value is .lesa t4an the ratio s Is. . For exatn le,'" max

s = 02 and n = 24 , then k 

-( .

667;~x 
values and m ~ 10 for cumulative values.
and m;:'3 for individual va+ues and m~) for

given the parameters s .

~ .

03,
therefore , m~6 for individualIf s 

= .

05 then k -( 1. 667max 
cumulative values.

The least squares splution to each complete closure design is
restrained by the fact that the sum of the angles on each table is
exactly zero, therefore there is no error entering the measurement
process from that source

Table 2 lists the standard deviation coefficients ~ k = k
A ,
= k

B' .
o~ ,

the angles which are calibrated by the partial closure designs for vc;t,1,uesof n 'UP to ten. In this case the standard deviation coefficients ,are 
the same for the coresponding angles on indexing tables A and B , that

, k
A = ' B for each position. As in the first Case s = sa = ks, 

~ '

but now there is an error term entering from the restraint since the
values of the angles being subdivided are not known exactly. This error
is spread out over the smaller angles and generally will be small com-
pared with the randpmmeasurement error within the series.

Thecombtnationa'f . 8 complet~ closure design and one or roo're partial
closure designs gives ,1t flexible system which should be adequate to

' '

economically measure any possible combination of indeX,ing table .angles
which orfecould imagtne' Tne onlyrequiremertt for using these tools is
a modest, atl1ount of imagination. An example is given in th.e next' section.
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These designs are applicable to other areas where angle measure-
ments are involved. The complete closure method is applicab1~ to the
calibration of a polygon. When a polygon is substituted :!i,or- the
mirror its exterior angles are calibrated. If the polygon has twelve
sides or less it is not too burdensome to take the full number of -

' '.'

measurements. For a twelve sided polygon the C(12 12) design could be
used requiring (12 x 13) = 156 measurements, a reasonable number.
However, if a 36 sided polygon were calibrated by the C (36,36) series
it would require (36 x 31) = 1332 measurements which normally would
not be economical. Instead , a design such as' G(36, 6) could be used
requiring a more modest (36 x 7) = 252 measurements. In cases where
is large and .m is small the error in cumulative values greatly exceeds
the error in the individual values. This may be an important factor in
polygon calibrations , so the value of m must be carefully chosen
according to the required precision.

Rotary tables may be used in place of indexing tables , but the
observed standard deviation will be much larger because rotary table
setting errors are generally much larger than i~dexing table setting
errors.

Example

The first application of the method of subdivision was in connec-
tion with the absolute measurement of a set of angle blocks. Angular
intervals on each indexing table which needed to be calibrated were
00 - 600 , 00 - 300 , 00 - 150 , 00 - 50 , and 00 - 10 On table A these

angles were denoted by (1 +(1
2' (1

+0. +0.
3' aI' andai respectively. The

corresponding angles on table B were similarly denoted using 13 instead
of (1. The most natural subdivision scheme seemed to be complete
closure on the 300 intervals and two partial closures on 50 and 10
intervals. The three designs chosen were C(12 6), P(6) and P(5).

The observed y values from the three series are given in table 3.
The computed values for the individual angles and their corresponding
standard deviations are given in table 4 along with the observed
standard deviation of a single measurement , s , and the degrees of
freedom , df.

Conclusion

Computer programs have been written for the calibration of indexing
tables by the methods described in this paper. The programs have been
tested and successfully implemented. As a result several angle cali-
brations have been made more efficient by reducing both the time
required to make the measurements and the time required to reduce the
data.
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Appendix A

Reduction of the Normal Equations of the Complete Closure Model

The normal equations given in section 4 can be expressed in a
form which is useful in programming the model for the computer. Instead
of performing the matrix multiplications the normal equations are formed
directly so the amount of memory needed is substantially reduced. The

product .x ' is given by

l r:

n-1

n-2
m m

n m m

' . . _p

n m m

- (-~ ~

z . . :-:: J

where Mi .and ~
i and n x m matrices.

Now

n m m 

(p: ) ~j .

a T 

nm ij nm i+a,

where the subscripts a
le reduced modulo n.

the observations , X'W- , 1s then given by
The coefficent matrix of

(~)

ij = (T i+n-k+1 j and

(~)

ij - (T i+n-2k+2 j where i - 1 n; j = I m; k - l



Let Q and Q ben x 1 vectors defined by

~ J ~ (-

:: - : : : -

::J 
. z

. .

where each z
i is an m x 1 vector of observations.

be' expressed by
Then Q andQ can

(Q)i - k-I j-l (~) ij (z

) j 

L: E (T ) i+n-k+1 j (z

j, 

andk-I j-l

(Q) 1 - E I: (~) 1j (z - I: k-1 j-I k-I j-I i+n-2k+2 j (Z

where i - 1,

The product X'W Xis given by

X -

n-I n-k 
D' V

-I D p

k==O n m m m n
n""l n-k

D' v
-1 D p

k-O n m m . m n

n-l n-2k
1: D' v

-I D

' p

k-O n m m m n
n-l n-2k 15' V"'l D p
k-O n m m m n

- L:. -~ J wb.re N ,
N aOON ar. n " " matr!ces,



-1 
Now D p

"" 

. m m ,n-m p
n m m m n ij n ijn-m,m n-m n-m

u p
n nm n ij ) i+a,j-b where the subscrip~s are reduced

modulo n..

. . 

The matrix of normal equations, X' X, is then given by

n-1
(N\j - :E (U i+n-k j-k'k-O 

. ,

n-1
(N)

"" ~o (U i+n-k,j-2k' and

n-1
(N) i - E. (U ) i+n-2k -2k where i - l,

n; j - 1k-O 
After augmenting with the two restraints the normal equations take

the form

3:'

~' 



Appendix B

Reduction of the Normal Equations of the Partial Closure Method

The normal equations in section 5 can be treated in the same
manner as those in section 4. The product X' W-l is given by

D' v D' vn n
n-l D' v "" 1

n-l n-l

-D' . vn-l n-l

. . . p~ -

:~ :~:J

~p~

D' V
n D' vn n 

r: 

. . 

, ~n H I . . . H

t-M

. .

. -M
n-1 . . 

. -M

where Mk and are n x k matrices. Now

(D' Va a - (~n:~a))ij
(T )..
na ~J

and

a D'
. Va a ij

a T 

na ij ) i+a,

where the subscripts are reduced modulo n.

the observations, x, , is given by

The coefficient matrix of

(~) ij = (T ) ij
and

(~) ij = (T ) i+k, where i = l n; j - l,



Let Q and Q be n x 1 vectors defined by
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: : : _

n-l . . . '\1

n-l . . 
. -M n+l

2n-l

where the z
k are vectors 

.of observations of size k x 1 if k 
and (2n-It) x 1 if k ,. n. Then Q and Q can be expressed by

n-l k
(Q) . ~ L:

(~)

ij- J + L: E (~) ij (z2n-kk-l j=l It-I j-l
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The product X' W X is given by. ,

)!:' \/ )( = ; '

. -N' where
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where the subsc
ripts are reduced modulo n.equations, X' W- X, is then given by

The matrix of normal

i' 1.

(N) ij ~l (U nk
) ij

+ E (Un n-k i+n-k j-kk-l

(in ij 

n-l
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where i . l.nl j - 1,

After augmenting with the two re~traints the normal equations
take the form

-N i 
-N I 0 i
it 0 0 

it 0 

where m
A and mB are restraint va1ues

fJ,".om the previous series.
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