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1.. Introduction

The 1ndex1ng table plays a v1ta1 role in the callbratlon of angle

standards[1,2 3] An object which is wrung or clamped to an indexing
table can be rotated through certain angles very precisely. The smal-
lest angular increment varies with different indexing tables but is most
commonly one degree. The deviation from nominal of any angular interval
in a high quality indexing table is usually no more than 0.25 second,
and the short term repeatability of any setting is usually less than
0.05 second

BRI
H ¥ .

In most angular callbratlons the indexing table pla]s one of three
rolesr

(1) 1Is used simply to rotate an object through some nominal angle
whose precise value need not be known.

(2) 1Is calibrated simultaneously with an angular standard in a
routine calibration process. v

(3) 1Is used in the calibration of an angular standard where some
of its angles need to be known precisely beforehand.

The second role is seen in the calibration of polygons. ~For example,
a 30° polygon may be calibrated by comparing each of its twelve angles.
to the twelve 30 angles of the indexing table and then computing a
least squares solution for the 24 unknowns. The third role occurs when
it is impossible or impractical to employa self-calibrating algorithm
such as in the calibration of a small angle block (less than 159) by
direct comparison to a known interval of an indexing table. 1In that
case it is necessary to do a preliminary calibration of the 1ndexing
table angle. One way of accompllshlng this is by applylng a measure-
"ment algorithm usually called the "method of subdivision" The
mathematics of this method are presented in great detall.

N

2. The Method‘of Subdivision

Angles on the same 1ndex1ng table cannot easily be compared with
each other, so it is more convenient to calibrate two indéxing tables
(denoted by A and B) simultaneously. That way each angle on one table
can be compared. with several on the other to give a redundant set of
observations. This idea is 1ncorp0rated in the method of subdivision
whlch consists of two types of measurement designs, "complete closure"
and "partial closure". The complete closure design is useéd to subdivide

T

1
Figures in ‘brackets indicate’ 11terature references at the end of the
paper,



the entire 360 degrees of each table into ng equal segments Al' -

A and B,, . .., B respectively where
ny 1 n, - ‘

no no
IR 3.8 = 360° .

i=1 i=1

Then by partial closure one segmenc on each table, say A1 and Bl' is

subdivided into ny equal segments Al’ v o ooy A and B s o e a9 B
n, 1 n1
respectively where o

n : n,
XAigAl and EB:LFBI'
i=1 i=1

Similarly Al and ﬁl can bé divided into nz equal segments ki. .o ey

Y and ﬂl. P o e ﬁ; respectively where .

) *2
) )
Z:A1=Aland 231-

i=l : i=]1 "

This process can be continued until the deéired level is reached,

As an example, if it were desired to know the value of the 02 ~ 10
interval on each table, they could be calibrated using the complete ‘
closure design with n, = 12 and two partial closure designs with n, = 6

and n, = 5, Thus each 30° interval would be calibrated, then 0° - 300

on each table would be subdivided into 5° intervals, and the o° - 5°

interval on each table would be subdivided into 1° intervals. This
subdivision is illustrated in figure 1, : , :

It should be noted that only those increments which are common to
both tables can be calibrated. For instance, if table A has a smallest
increment of ope degree and table B has a smallest increment of ten
minutes, then the smallest increment which can be calibraced on each
table is one degree.
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3. Preparatibn for Measurement

In preparation for measurement table A should be mounted on table B
as pearly concentric as possible, It is then helpfuyl if this assembly
is mounted concentrically on table £ which is either an indexing table
or a rotary table, This table is not to be calibrated but serves only
to rotate the other two tables between sets of measurements as required
by the measurement design., A mirror is then mounted on table A approxi-
magely at the center. An autocollimator is mounted so that the face of
the mirror is centered in its field of view, Adjustments are made so
that the autocollimator reading is near the center of its scale when
each of the tables is set in its zero position, The autocollimator
should be adjusted so that it veads horizontal angle only,

If table C is not available then either an adjustable mirror must
be used or the autacollimator must be shifted between sets of measure~
ments, The whole assembly should be clamped to a surface plate as shown
in figure 2, The process of clamping the tables should be done with a
minimum of distortion, A hood should be constructed over the autocolli~
mator and mirror so that no outside light can interfere with the auto~
collimator reading,

The asgembly is then ready for the measurement process which in-
volves anly the appropriate rotations of the tables, Tables A and B
are always rotated in opposite directions through equal nominal angles,
The observed change in autocpllimatpr reading is then equal to the
difference between the true values of the two angles, This is illustra-
ted ip figure 3 for the angles Al and B, which are nominally N with

deviations ay and Bl respectively,

4, Complete Closure Design

Let tables A and B each be initially subdivided into n intervals of
360/n degrees, and let the deviations from nominal of the intervals be
denoted by the vectors a = (a; + « 4 o) and B = (B, 4 . + B )’

respectively, 1If every o were compared with every 8 the result would be

ng,measurements on 2n unknowns, In cases of large n this may require

more measurements than wyould be practical, 1If every o were compared
with only m of the B's, where m<n, then there would be wn measurements
on 2n unknowns, so for m > 2 there wpuld be redundancy in the system.

A convenient measurement algorithm is to take n blocks of m differences
of the form
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a - By @y = By % = Bho1
ay = By |, oy = By N I el
Lam - Bm “mtl Bm+2 -1 Bm-Z

(note that B, B, ;) where with each succeeding block the @ sybscript

n-1 -
is increased by one and the B subscript by two. The ith block of m
differences is generated by taking mt+l observations according to the

following scheme:

Yip =Mt e

1l

Yig =83+ 0% — By gt e

Yig T 8y hog Fogy mByyg m Byt ey

A.+a.+00 _B Q—B
1 1

Yi,mkl Pt %1 T Bager Tt 214m-2 T Cpid

where Ai is the initial reading of the autocollimator and the €'s are

independent error values from a distribution whose mean is zero and
whose variance is 02, The subscripts of B are reduced modulo n. The
complete closure design will be denoted by C(n,m).

Before proceeding, a word should be said about sign convention.
This model assumes that the two tables are numbered in opposite directions,
and that increasing the angle of table A gives a positive deflection of
the autocollimator. If the tables do not conform t»o this convention,
they can be made to conform by reversing the assignment of the angles
or by reversing the sign of the observatioms or both.

: th . _ v
The new random variables for the i~ block, z, = (Zil’ « o e zim) s

are formed by



291 T V42 T V1 T Y

12 T Y43 T V40 T Oyyy By tEg- €

B

€

im ~ Viwr T Yim T %4wel T Poivm-2 T Smer T G,

a4 -

or in matrix notation z, = Myi where
-1 10 ... 0 0 O
0-1 1 0 0 O
M= : :
0 0 O -1 1 0
0 0 0 ¢ o e 0 —l 1

: 2
Since Var(yi) o Im+l’ then Vargzi) = g Vm where
2-1 0 0 ... 0O
-1 2-1 0 0 0
V =MM' =} 0~1 2 -% 0 0
m L ] ®
0 0 0 0 ...-1 2

Let z = (z1 Zy o e zn)'. Then the least squares estimation takes the

form

E(z) = X (g)



where

5% o ]

mn mn

ppl  -pp?

mn n

eel i
n-1 -p p® 2
e M 11 mn .

4 -

and D = [I_© ] where I is the m x m identity matrix and
m m m,n-m m

em n-m is the m x (n-m) zeroc matrix, and Pi is the n x n permutation
]
matrix which is given by

1 610 ... 0O
P =10 0 1 0

n o L] "
1 0 0 .. 0

The full variance-covariance matrix of the observations is given by
the nm x nm block diagonal matrix '

...V L
n
Va
W= R *
\'
m
.P -
Then i -
le
v?l
L m
1% = '~‘ where
. V_l
m

10



m m-1 m~2 2 1

-1 1 m-1 2(m~1) 2m-2) ... 4 2

Vm =1 m-2 ?(m—Z) 3(m~2) 6 ] 3
2 4 6 2(m-1) m-1

1 2 3 o« o s m-1 m

n n
z: a, = Z Bi = 0) take the form
i=1 i=1
] -1 3 0 o ' -1
X'W X 0 2 8 X'W "z
' 0 0 O A= 0
0 $'0 O Ao 0

wvhere Al and AZ are Laérangian multipliers entering in the minimizatibn

process and ¥ = (1 1 . . . 1)'. (The normal equations are developed
further in Appendix A in a form suitable for computer programming.)

The estimates are given by

- -1
o x'w’lx 3+ OC X'W—lz
B 0 % 0 C a b X' iz
e ' 00 0 = a'c d 0
]
h 2 0 o 0 B'd ¢ 0

where C is the variance-covariance matrix of the estimates.

11
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The
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the
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predicted values are given by

the deviations by

estimate of o is given by

g = J ' d'w’ld/(mn-zn+2)

the standard deviation of the estimates by

oa =0 \lcﬁ and GB ’""chm, j4n’ and

bovériance‘pf o, and B, is given by

i 3

o = g C .
aiBj i, ntj

the cumulative values let

€

<k k
¢, = Y o, and P, = By o
k 5§i 1 k ggi 1
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The standard deviations are given by

~ A k k - ~ 15-‘ k »’\ L
o¢k =g ééi 2 Cij and 0, =0 2J 2: Cn+i; gt

3 i=1 j=1

There is no error entering from the restraints since they
represent an exact relationship. '

5. Partial Closure Design

Let A, and B, be two calibrated intervals of the same nominal
angle on tables A'and B respectively and let their observed deviations
from nominal be given by m, and m_, respectively. Let the corresponding
variance-covariance matrix of the values be given by

G : O'm o
, a A"B
s =] y
O'm. O'm
A"s "B

The intervals may be subdivided into n segments denoted by
= o ! A = 3
& (dl P an) and B (B

design under the restraint that

1 én)' by using the partial closure

n

n
&, =m, and B, =m, .
=t A -1t B

Each o can be compared to each é so that there are n2 measurements
of the 2n unknowns. One measurement algorithm which is convenient
forms the 2n-1 groups of differences

[al_Bn], ?l—?n-—l 3 ¢ o s ‘:‘rl"?l 3 ? "?1 2 s e ey [an"Bll
% " By % = B % 7 By
0Ln——l-Bn-—l %~ Bn—l
Lo - B
n n

13



where the central block has n differences and the adjacent blocks :
decrease in size by 1 until the end blocks have only 1 difference.

Each block of kdifferences requires k+l measurements. For example

the central block is generated by nt+l measurements according to the
following scheme:

ynl n 1

yn2

yn,ﬁ+1 f n 1 n 1 ' Bn + €ntl

i
-
+
[=3
+
+
Qe

I
™e

i

i

where An is the initial reading of the autocollimator and the e's
are independent error values from a distribution whose mean 1s zero
and whose variance is 02. This partial closure design will be denoted

r) = ]
by P(n). The new random variables z (znl . e e znn) aye formed by

21 S Vn2 T Vn1 T TRt E T
202 TVn3 "V T % "Byt ey
% " yn,n+l " Ymn T an - Bn + o+l T n

or in matrix notation z = My where

-1 1 0 0 0
0-1 1... 00
0 0 0 -1 1

Since Var(yn) = 02 In+1’ then Var(zn) = ozvn where Vn is defined

as in the previous section.
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Let z' = ( . Zén _ 1) be the complete set of difference

z! z!
172 °
measurements, The size of the vector Z, is k x 1 if k < n and (2n-k) x 1
if k > n, Corresponding to each z) is a‘varianée-govariance matrix

V, vhich is k x k if k<n and (2n-k) x (2n-k) if k > n. For

k = 1,2, and 3 the matrices take the form

9 -1 2-1 0
V.= (2], V, = [_ ], Vo= |-1 2-1|
1 2 1 2 3 0 -1 2

The least squares estimation takes the form

o
E(z) = X (B)
where E
B n-1 :
Dl D1 Pn ;
n-2
D2 QDZ Pn
X = : :
D -D P0
n n-'n
1
n-1 Pn Dn--l
] n’-l .
P D

) | o 1 S
and Dk = [Ik ek,n—k] where Ik’ Qk,n—k’ and Pn are defined as,in the
previous section. The variance-covariance matrix of observations is
given by , '

15



!

by

where W is a block diagonal matrix whose blocks vary in size from

1 x1tonzxn. Then

-v_l e
1l
vt
w-l = ¢ [ .
v;l
-1
n-1
* - —1
i Vl N
where V.1

k

| | | 3 2 1
-1 L, ol L [21] ~1_1
vy T3 LV, = 3 [1 2]"’3 Z [i ;‘ §

The normal equations (1ncorporating the restraints

n-\ ; P e n .
2: @, = m, and 2: Bi = mB) take the form
=1 i=1 ‘

16

2

is the same as in the previous section. For efamﬁle.

{
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wix g 2 g Wl }
2' 00 ofixr]-= n

' 1 A
o 20 0] |1 my

where A, Az, and % are defined as before. (The normal equétions are

developed further in Appendix B in a form, suitable for computer
programming.,) :

The estimates are given by

¢ -1
Z X'w ’lx 0 xw s c ab] [xwls
0 - m 'e d m
il e 000 A= A
1 b'd ¢ m
Az 0 20 O o omy , B

where C is the variance-covariance matrix of the estimate33

The predicted values are given by
= e
z X H

and the deviations by

~
d“ZH'Z.

The estimate of o is given by

G = Jd'w-ld/ (n2-2n+2) .

Since the random error entering through the restraints is non-zero it
must be taken into account when computing the total standard deviatipn
of the estimates. The complete expression fot’the variances and’
covariances of the estimates is given by

Var (

~ L
) = 02 C+ (ab) s (E.). Thus

o Qe

13



¢ =fc +al e +b262 +2ap 5

ai “id i mA i mB ii AmB
~2 ~2 2 -2 2 A2 -
o = a° ¢ . +a;,, o +b,, ¢ +2a, b, o
Bj j4n, jin j+n m, Jn ny jtn jn mmy
and the covariance of &i and éj is
as 3 - &2 €y e ¥ aianﬁai + (aibm_‘ +a .b)o
184 st { " j ot it mmy
P a2 :
+ b,bi .o R ;
intj m, =
)y o
Fpor the cumulative values, let -
k , Co g .y
s 8 3 Y
¢, = }E: o, and ¢, = 2: B,
k s k i i
The variances are given by
v . & k ko,
of =35 Y Z:Ci-j+ Za A + -Z_:bi omB +
k i=1 j=1 i= A i=1
55 k . ~2 2 gi k
2 a b,] o »,and o: =0 CC..
i=1 i i=1 Y/ T u’k i=1 j=1 it ,j+n
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6. Sources of Error

In the mathematical models just described the only errors.accounted
for were the random errors of measurement and the propagation of these
errors into the following series. The error of a single measurement.
which was given as o is the combination of random errors from three
sources:

1) random setting error in indexing table A

P

2) random setting error in indexing table B
3) random error of the autocollimator reading.

Since some of the physical parameters of the system are unknown and
cannot be modeled, there are systematic errors in .the measured values.
These probably are small, but it has not been determined if they are
negligible. Factors such as the autocollimator reading being biased

by vertical angle, imperfections in the mirror, effects of varying
temperature, ‘and foreign particles in the setting mechanisms of the
indexing tables can influence the -accuracy of calibrated values. -There
is evidence that over a short period of time, such as a week, that these
effects are negligible in comparlson to the random errors.

There are several reasons why long term changes in the indexing
table angles may not be negligible. If the table is moved from one
location to another it may be clamped down in a different manner thus
resulting in slight distortions. The grease which lubricates .the
tables may collect small amounts of dust over long periods of time and
- as this dust works its way into the teeth of the tables it causes a
variability in the setting of different angles.

Over a period of years the values of two indexing tables at NBS
have been observed to drift slowly, but whenever a table was dismantled,
cleaned, and reassembled there was usually a significant change in the
angular values. The conclusion to be drawn is that over short periods
of time systematic errors can probably be ignored while over longer ‘
periods of time, such as several months, they become significant and it
is better to recalibrate the table before using it.

7. Applications of Designs

As described in section 2, a comblnatlon of the two types of designs
allows the calibration of intervals of various sizes by subdivision.
However, each design can be useful by itself. - When the complete
closure design is used alone, it.subdivides the two tables into n
equal angles each. The standard deviation of all the angles on indexing
table A are equal, and likewise for indexing table B.

19



Table 1 lists the standard deviation eoefficients, k, and k_, of
the angles for all values of n up to 36 and for all appropriate values
of m, Note that the standard deviation coefficients for the angles
on indéxing tablés A and B are mnot always equal for a given design.‘ The
standard deviatlons of the individual angles are given by S, = kA 8 and

i: B
sg = kB s where s is the estimated standard dev1ation of a single >~
i
measurement. L

The standard deviation coefficients for the cumulative angles are
also given. They are the maximum values of the k's Whlch correspond
to all possible sums of consecutive-angles. -

Table 1 is given primarily as an aid in determining which value of"
m to use when subdividing two indexing tables into n-equal parts each.
Assuming that there is a desired upper limit for the standard deviation
of each angle (s ) and that an approximate value of the observed o

standard deviation (s) is known, then any value of m is acceptable
whose corresponding k value is less than the ratio smax/s" For example,
given the parameters s & ,03, Spax = «02 and n = 24, then' k < .667;
therefore, m>6 for individual values and m > 10 for cumulative values.
If Smax - +05 then k < 1,667, and m>3 for indiv1dual values and m>7 for

cumulative values.

The least squares solution to each complete closure design is
restrained by the fact that the sum of the angles on each table is
. exactly zero, therefore there is no error entering the measurement
process from that source, :

‘Table 2 lists the standard deviation coefficients, k = kA = k , of

the angles which are calibrated by the partial closure designs for values
of n up to ten. In this case the standard deviation coefficients are .

the same for the coresponding angles on indexing tables A apd B, that'
is, A k for each position. As in the first case 5y = Sg = ks, . -

but now there is an error term entering from the restraint since the’
values of the angles being subdivided are not known exactly. This error
is spread out over the smaller angles and generally will be small com-
pared with the random measurement error within the series.

‘The combination of a complete closure design and one or more ‘partial
closure designs gives a flexible system which should be adequate to
economically measure any possible combination of - indexing table angles °
which one could imagine. The only requirement for using these tools is
a modest amount of imagination. An example is given in the next section,

20
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20 16 «345 0345 +347 - »348

20 17

.33‘3 b4 .33‘ .336 T .336
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TARLE 1. (CGANT,)

STANDARD DEVIATION CHEFFTICIENTS GF ANGLES 6N INDEXTING
'!‘ABLES A AND B CALI“RATCD WITF (‘?WlPI ETE CldSURF DL#IG\F&Q.‘W

oo INDIVIDUAL. . oo CUMULATI VE. 4 o0
N W COKCAY T K(B)Y MAW*K(A) MAX K(R)
w1y s - D é 1 &
20 18 . 328 «326 $325 +326
20 19, 316 316 318 ¢316 "
20 20 0309 «310 »309 2310
24 3 1,507 1.424 = 4,444 8,246
24 4 1,033~ 1,004 2.785 4,976
24 s 729 2696 1.602 2 .658
24 6 o622 o611 1,195  1.866
24 7 +545 o531 .886 1.266°
24 8 500 2896 . 736 2980 '
26 9 e465 458 o617 759"
26 10 4439 o437 548 o637
24 1Y T Le17 0,613 ! .,492 - 543 "
24 127 3%  .398 '452V b ,482 ;j
24 13" - ,383 381 e418 434 i
24 14,369 -7 388 - . ,393F - ..aO?‘ @f
2a 15 .356  .358 373 0 376
24 16 o345  ,345 357 ¢ 358 %
24 17 . o335  ,334 W362 0 ,34%F .
24 18 «326 326 C.330 0 v 3zt "
24 19,318 317 0320 "¢ G320 7
2a 20 G310 7 L3107 311 - .311’i o
24 21 303 ¢302  .303 "> ,303 o
24 22 ¢ 4296 L2956 0296 74,2967 )
24 23,289,289 28905, 289 ¢ 7
28 24 283 - L,283 . ,283° -  ,283 B
30 3 1,665 1.888 6, 08@'f‘*1!.63§v§ o
30 4 1.121 1,093 - 3,782 " - 7.,08% o
30 5 o T66 - o733 ° 2, 120 {R,759 -
30 6 o683 1 632 1, S 2 .6507 f
20 7 o556 542 1.113,‘f~ 1,768 " .
30 8 #S07 T o503 ' ,601 % 1,359 _
30 -} Y- 462 W731 ¥ 1,021 )
30 10 442 G440 ° ,633 ¢« ,837 b
30 11 0819 415 7,883 = $683 *
30 12 800  ° 4399 i 801 v ,592
30 13 3848 2381 ¢  ,a88 v 515
30 14 0370 369 < L4266 ¢ L8466
30 1S 357 o356 ,399 422
30 16 «386 G346  ,377  *  ,393
30 17 336 o338 °  ,388  ° 367
30 18 0326 o326 .343 | ' ,349
30 19, 318 - G317 - 230+ ,333
30 20 - .310 «310, * .319  ,321
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TABLE 1, (CANT,)

STANDARD DEVIATION COEFFICIENTS #F ANGLFS #N INDENING
TABLES A AND R CALTHPATED WITH COMPLETF CLOSURE DES VOGNS,

o f ,' v g .
. ees INDIVIDUAL,, 400 e CUMULATIVE, .,
N ] KCAD - K(a) MAX K(A)  MAX K(R)
3 2 «303 302 .30 L3110
30 22 296 0296 4300 _+301
30 23 290 290 . ,293 293
30 24 « 284 ‘0284 w.eR2B6 «286
30 28 0278 . <278 T 279 _ .279
30 26 0273 273 1,273 274
306 27 «268 268, L2268 .268
30 38 263 02623 ‘6263 . ,267
30 29 . s2%8 258 ‘¢258 258
30 30 2564 e254 Y173 254
3¢ 3 1810 - §,737 7.956 15,37
36 4 1,203 1.175 4,519 . 9,348
3e s «801 o768 2,715 4,98}
36 6 e664 0653 1.965 3,499
36 e 5158 509 1,086 1,780
36 % o473 8566 867 1,328
36 10 084S Yy «?737 . 1,073
LU R o821 o817 «629 ' ' 862
36 12 +801 0400  «S60 731
36 13 «385 ' , 382 502 0621
36 16 +370 o370 862 548
38 15 +»358 ‘0356 828 487
36 16 0346 0346 802 445
36 17 «336 «338 375 409
%€ 18 o327 326 261 . 381
36 19 318 o317 . e346. . 388
3¢ 20 «310 310 331 ' «340
% 21 303 0302 319 0324
36 22 296 *266 4306 0312
36 23 290 290 T e299 . 4301
3¢ 24 o284 284 0291 292
36 25 «278 278 «284 284
36 26 0273 273 ‘277 , 278
36 ar o268 - «268 . e27y 271
36 28 0263 - 263 «265 2266
% 20 ¢25% L2859  e260 «260
3% . 30 0284 . ¢ 254 0256 . 256
36 3 2560 250 251 0251
3% 32 0247 0247  e287 0247
36 33 243 0243 02473 0243
36 3a 236 «239 236 | 4239
36 38 236 235 | «236 . 4236

36 36 0233 ‘0233 o233 0233

24



TABLE 2,

STANDARD DEVIATINON COEFFICIPNTS #F ANGLFS
“N TNDEXTNG TAHBLFS A AND B CALIBPATED wrTH
PARTVAL CLASHCE DESTONS WHERE K(A)I=EK(D),

PAS

-
e
117]

53

W -

o

O DX ND AL N e

N=2 N=3 N=g N5
« 761 Sk 601 e 546 . 504
+ 791 2764 «HBK? «501 e 552

- ETT H67 599 549
- - W6 01" +601 «549
- - - e 546 Y
- - - - 504

N=7 N=3 N=g N=10
471 443 0420 400
«E13 882 «856 434
.51t 480 434 0432
«510 479 . 453 0431
«511 479, 0453 431
«513 +480 0453 431
«471 «4R2 454 431

- 843 455 «4322
- - 420 434
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These designs are applicable to other areas where angle measure-
ments are involved. The complete closure method is applicable to- the
calibration of a polygon. When a polygon is substituted for: the
mirror its exterior angles are calibrated. 1If the polygon has twelve
sides or less it is not too burdensome to take the full number of ==
measurements. For a twelve sided polygon the C(12,12) design could be
used requiring (12 x 13) = 156 measurements, a reasonable number. '
However, if a 36 sided polygon were calibrated by the C(36,36) series
it would require (36 x 37) = 1332 measurements which normally would -
not be economical., Instead, a design such as*C{36,6) could be used
requiring a more modest (36 x 7) = 252 measurements. In cases where™n
is large and m is small the error in cumulative values greatly exceeds
the error in the individual values. This may be an important factor in
polygon calibrations, so the value cf m must be carefully chosen
according to the required precision.- , -

Rotary tables may be used in place of indexing tables, but the
observed standard deviation will be much larger because rotary table
setting errors are generally much larger than indexing table setting
errors, R

8. Example

The first application of the method of subdivision was in connec~
tion with the absolute measurement of a set of angle blocks. Angular
intervals on each indexing table which needed to be calibrated were
0° - 609, 0° - 30°, 0° - 150, 0° - 50, and 0° - 1°, On table A these

. angles were denoted by al+a2, s a1+a2+a3, &1, and &1 respectively. The

corresponding angles on table B were similarly denoted using B instead
of o. The most natural subdivision scheme seemed to be complete
closure on the 30° intervals and two partial closures on 5° and 1°
intervals. The three designs chosen were C(12,6), P(6) and P(5).

The observed y values from the three series are given in table 3.
The computed values for the individual angles and their corresponding
standard deviations are given in table 4 along with the observed
standard deviation of a single measurement, s, and the degrees of
freedom, df.

9, Conclusion

Computer programs have been written for the calibration of indexing
tables by the methods described in this paper. The programs have been
tested and successfully implemented. As a result several angle cali-
brations have been made more efficient by reducing both the time
required to make the measurements and the time required to reduce the
data.
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TABLF 4,

COMPUTFD VALUES FAR INDIVIDUAL ANGLES ON T NPEXING
TABLES A AND R (VYALUES IN SECHNDS), :

CTAALF A TABLE B

S/DF INTERVAT. ESTIMATE  ESTUIMATE STD DFV
SFRIES 0=30 . eg117 . 037 .019
10-60 ve247 016 019
A O0=GO 101 ~ «011 « 019
03T /80 . 90=120" W17 . =,021 019
: © 120-150 052 . 064 «019
150«1R¢ = = ®,065 «04% e 01¢
180'2‘0 '009‘ ‘rOOﬂ 00’9
210-240 207 " D04 « 019
240=-270 °,061 -,N22 «019
270=300 ©,012 o .018 « 019"
300-330 e2173 -, 039 « 019
130-0 o042 015 ' « 019
SERIFS 2 0-5 . e020 «.002 . 016
=10 °, 020 004 017
10-18& . e4012 - ,042 . 015
«00/26 - 15-20 ©,025 «030 - «016
20=25 . ©o036 -,014 017
2€<30 ®,084  «,023 2016
SFRIES ? 0=-1 , 0004 -~ ,00S «018
t=2 . 0016 . . ®,023 016
23 , *, 015 «018 016
NIV /Y7 3= ®,003 - = =,006 . 019

4-5 ) .0‘8 .ooa .olq
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' Appendix A

Reduction of the Normal Equations of the Complete Closure Model

The normal equations given in section 4 can be expressed in a
form which is useful in programming the model for the computer. Instead
of performing the matrix multiplications the normal equations are formed
directly so the amount of memory needed is substantially reduced. The

product X'er is given by

ptpr vl oplpyl 0 plpyl

_l n m m n m m nmm
W =] ‘ .

’ 2t pryl pt2peytl o pZpyd

n mnm n mn ‘nmm

- 12 n
—Ml _Mz « s o —Mn

- where M, and ﬂi and n x m matrices. Now

-1
a_ 4.1 - a Vm
(P°D'V_") 4

= ) ..
nmm “1j n en_m’m ij

a
&, Tnm)ij T Vnm’d+a,j

where the subscripts aye reduced modulo n. The coefficent matrix of
the observations, X'W ~, is then given by

(T and

CRpP

am’ 14n-k+1, 3

M) y5 = Topd 14n-2ks2,; ¥here 1= Ln; § = Lm; k = L,n.
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Let Q and 6 be n x 1 vectors defined by

ey oy

“1
Q - Ml MZ ¢ v . Mn z
'-Q "Ml-MZ e o 0 "'Mn E
-1z,

n "

where each zy is an m x 1 vector of observatioﬁé."ThenyQ and 6 can

be expressed by

n m n m -
T )
12':'1 j}=:1 1503 - 12';1 :i§1, Tan) phnert, g By, 20
@, = Y = (T )., _ (z,)
1T & A Mkij ny 2 & T,y By
where 1 = 1,n.
The product X'W IX is given by
~n-1 n-k o n-1 n-k |
P D'V 'p P* -3 2 ' vip p¥
-1 o  mm mn k=0 " m m . m n
XWX = ‘ : ,
n-1 n-2k o n-l
-y r prvip pF ¥ eyl p2k
L k=0 n m m m n k=0 n m m n
[N & . - o
= X . | where N,N and N are n x n matrices.
[~-N' N
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-1

-1 b a Vm em n-m b
Now (Pﬁn&lvm DmPn>ij = (Pn le o o)y "
n-m,M n-m,n-m

a b "
<PnUnmPn>ij = (Unm)i+a,j—b where the subscripts are reduced

modulo n. The matrix of normal equations, X'W_lX, is then given by

- n-1

My kz-—-%) U -k, j-k*

. n-1

Mgy = 2 )ik, jo2i0 30

k=0

n=1

2 @ )

13 = Z "where 1 = 1,n; j = 1,n.

i+n-2k, -2k

After augmenting with the two restraints the normal equations take

N —& 0 o Q
NN o0 2| |8 -Q
0 0 0 A = ol
0 2'0 0 A 0
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Appendix B

Reduction of the Normal Equations of the Partial Closure Method

The normal equations in section 5 can be treated in''the. same
manner as those in section 4. The product x'w-l is given by

-1 -1 n-1 -1 -1
| ) 1 1 ?
B DIVY ... DIV BRTD LV ... PBIDy V]
X'w ™ =
: _pt! pt -1 _pl nt -1 e -1 Y -1
P'DI VT ... -P0 D!V D! LV ... D V]
Moo MOF .M
—Ml s o o —Mn—Mn"'l . s @ _Ml

where Mk ahd-ﬂk are n x k matrices. Now

V—l ‘
' —l = a = : 4
(Da Va )ij 9 : (Tna)ij ‘and
n-a,a ij
a ., o1 - a -
(?n Da Va )ij (Pn Tna)ij (Tna)i+a,j

where the subscripts are reduced modulo n. The coefficient matrix of

the observations, X'W—l, is given by
M)y = (Tydyy 2and
(Mk)ij = (Tnk)i+k,j where i = 1,n; j = 1,k.
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Let Q and Q be n x 1 vectors defined by

1
Mg
VA
n
-M fn+1
Z

where the z, are vectors of observations of size k x 1 if k < n

and (2n-k) x 1 if k > n.

7
oot

@,

where 1 = 1,n.
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Then Q and (:2 can be expressed by

k n-1

Tk n=l k '

P (T ) K13 (zk) F + E-:l jz_:l (Tnk) i+k,j (ZZn-k) j?
k . n-1
k n~-1 k :

j2=:1 (Tnk) i+k,j (zk)j * kz-:l jgl (T n-k)j

and



The product x'w'lx is given by. .i.

. N ;.
xwilx = |- N h
i— "N' N where

n n-l o
= 4 _l ’ ' n-k 4 gl - ok
N k2=:1 Dy Vi© D+ kgl B Ve Do By
n n-1
. -1 n-k n~k -1
= ' 1
N 2;& Dk Vk Dk Pn + 2;& Pn Dn—k Vn—k Dn—k’ and
: n n-1 :
. k o, -1 n-k R |
N 1:;1 PS Dy V,© D BT+ kz=:1 D L Vo Doy

vl
-1 c a b b,n-b c
Now (P® D! V.~ D, B°) =(P[ ’ ]p) =
n b ;b b "n"ij n enfb,b en—b,n—b n’ij
‘ i
a c
(Pn Unb Pn)ij (Unb)i+a,j—c

e

where the subscEipts are reduced modulo n. The matrix of normal
equations, X'W X, is then given by

TS
LA Ol

n n-1
Myy = kz=:1 CUudi1y 1?—-:1 (U, 0k 140k, =k °
. n n-1
My = kz___:l Ot gomte ¥ 20 Popneid pnote,30 209
. n n:}
Myy = 1?;1 Ot g4, -ntk + 1?:1 Uy, n-k1j
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where 1 = 1,ny j = 1,n.

After augmenting with the two restraints the normal equations
take the form '

[N % 2 0 a Q .
N N 0 2 -Q
3 0 0 A m,
0 20 0 X m,

where m, and m

A are restraint values from the previous series,

B

USCOMM-NBS-DC
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