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Abstract:

The Chromatic Analysis Neutron Diffractometer or Reflectometer (CANDOR) is a new instrument under
development at the NIST Center for Neutron Research (NCNR) that will use scattering by a broad
energy spectrum of neutrons to investigate the structures of materials. The triggering, discrimination,
and acquisition of neutrons from a broad energy spectrum over a range of scattering and reflecting
angles brings unprecedented design challenges. As well-established 3He neutron detectors would not
meet the form factor requirements of CANDOR, it was necessary to develop an ultrathin neutron
detector using 6LiF:ZnS(Ag) plastic scintillator coupled to wavelength shifting fibers leading to a Silicon
Photomultiplier (SiPM) for readout. The signal from the SiPMs must then be processed using fast
electronics to discriminate neutron capture events from other event types. At this stage, we have a
highly efficient, extremely thin, neutron detector whose performance is on par with traditional 3He gas-
filled tubes at a fraction of the price.

The CANDOR data acquisition (DAQ) system includes waveform digitizers, which use digital signal
processing (DSP) techniques to accurately identify neutron events. For this project the neutron
detection and data acquisition/processing systems were characterized and evaluated for use in the
CANDOR instrument as well as for other applications.
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CANDOR — Cih omatic Analysis Neutron
Diffractometer Or Reflectometer
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 Neutron Diffractometry and Reflectometry is useful for analyzing the
structures and dynamics of materials.

« CANDOR will use a broad range of wavelengths to allow for faster
measurements.

« CANDOR required the development of a novel ultrathin detector.
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 Neutrons are generally detected
indirectly through the products of a
neutron capture.

e Left: Detection schematic for
CANDOR'’s LiF:ZnS(Ag) detector.



Absorbing the Neutron

 To the right is a Lithium-Fluoride salt

e Li-6 has a large neutron absorption
Cross section.

 An alpha and a triton are ejected after
the absorption

°Li + n — *He (o) + *H (T) + 4.78 MeV



Harvesting the Energy

* This is the tough part!

« Harvesting the energy from the high
energy Alpha and Triton is a
complicated process.

* We use a second material to create
visible light from Alpha and Triton:
Silver Activated Zinc-Sulfide



Detector Optimization
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» These were then verified with a
high purity neutron beam.

7 L « Left Bottom: Scanning Electron
Microscope (SEM) image of the
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Pulse Shape Discrimination

Prompt and Delayed Integration
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e To distinguish neutron captures from gammas and thermal noise,
pulse shape discrimination is used.

 Two window integral discrimination can be done using digital or
analog electronics.



Characterizing the Detector

New Equipment * Python scripts were developed to
analyze the digitizer’s output.

» Goal of transitioning from a full test

- rack of analog and digital electronics
to a compact digitizer and computer
""""""""""""" for detector characterization.

— Jupyter xia_analysis Last Checkpoint: 06/29/2017 (autosaved)
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event=data[r]

Nl PXle-10620

A if int(event[5:7]) == ch:
il £ ¥ trace = event[30:].split(” ")
race = np.asarray(map(int, trace[8:8956]))

counts, bins, bars = plt.hist(trace, 20@, range =(1608,1808))
plt.clese()
off = bins[np.argmax(counts)]

offset.append(off)
random. append(r)

a+=1

offset = int(stats.mode(offset)[@][e])

hough h il Long th b (&
gral = []
tn = []
array = []

r j in tnrange(len(data), desc="Integ'):
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Detector Optimization

Detector Characterizations, 2017-Jun-05
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 Over 6 batches of detectors we have substantially optimized our detector.

» Optical Figure of Merit (FOM) is a figure derived from the pulse height
distribution that helps describe the noise-neutron discrimination.
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Detector

Going from a neutron detection
efficiency of 40% to 91%

The other ~9% of neutrons will
either

* Pass through the detector

« Scatter off the detector

* Produce an unrecognizable signal

Keeping the total cost under
$500/3-channel detector

Detector were developed in
partnership with Eljen
Technologies.
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Appendix

« Why Neutrons?
 Neutron Use Example: Determining Cell Membrane Thickness
 Wavelength Discrimination: Pyrolytic Graphite (PG)
* Optical Figure of Merit (FOM)
CANDOR 30 beams 0.167 deg separation 9/22/08
. 5 |
d ‘rangoutd.” oo
* ’qr.dppcraiﬁgl?;.tssii’ |
‘grdppecau.2kp.sil’ -
| { l"-__l.j."f "‘p’j ........ N_“‘:;.' ]

Q (A-1)



m, = 1.675 X 107%7kg

Why Neutrons? Q@ §) charge=0, Spin=1
> ~ Magnetic dipole moment:
o Useful for determining the positions and | i, = —1.913 puy

motions of atoms in materials.

» Accessible wavelengths comparable to
interatomic spacing.

« Magnetic moment allows for probing of
magnetic structure.
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Neutron Use Example: Determining Cell
Membrane Thickness

« Cell membrane is comprised of a lipid-bilayer outer face
that we now know is —2 nm thick.

 Neutrons will scatter differently off of the
hydrophilic head and the hydrophobic tail.

« Alternative techniques would not have been
usable.
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Wavelength Discrimination: Pyrolytic
Graphite (PG)

PG has a consistent plane spacing
Bragg diffraction “selects” the required neutron
wavelength.

Allows access to 4-6 A neutrons
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