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Calibration of Inductance Standards in the Maxwell-Wien
Bridge Circuit”

Thomas L. Zapt

(February 28, 1061)

This paper discusses. the errors from residuals in the Maxwell-Wien bridge and the
effect of these on the measurement of induetors in a bridge not having a Wagner ground.
Particular attention i< given to the use of substitution methods for aceurate measurements

and especially to the “equal-substitution™

(comparizon) method, which can vield exeellent

precision in the calibration of inductance standards.

1. Introduction

Self inductors and mutual inductors can be con-
structed to have inductance that is computable from
their geometry and dimensions. Although the in-
ductance of certain inductors having measurable
mechanical dimensions and simple geometrical form
can be computed with excellent accuracy, such
inductors are not often used as reference standards
for inductance measurements. In practice, induct-
ance measurements are more conveniently made with
reference to noncomputable reactances in the form
of compact and stable reference standards of induct-
ance or capacitance. Accurate values of inductance
can be determined by comparing the reactance of
the inductor with the reactance of cither standard

apacitors or standard inductors by use ol appro-
priate bridge circuits. However, the most precise
met Lqm(‘ment of an unknown qu(umt\‘ (in this case
inductance) is made by comparmg it with a standard
of lile kind and magnitude, the small differenc ¢ being
measured by a (‘OII'LS[)OH(]H'I(" small change in one
element of ‘the bridge circuit. When comparison
methods are used, it is often possible to reduce the
detrimental (ﬁwts of residuals in the measuring
circuit to suci an extent that the precision of com-
parison is muech better than the accuracy with which
the calibration standard is known.

The Maxwell-Wien bridge cireuit has long been
used for the accurate measurement of inductance.
For measurements of best accuracy with any alter-
nating-current bridge circuit, even for comparison
measurements, it is necessary to consider the effeets
of residuals, the ways of reducing these effects, and
the handling of corrections to offset the net errors.

2. Maxwell-Wien Bridge

A bridge cireuit originally developed by J. C.
Maxwell [1} for use with ballistic detcctors was
adapted by M. Wien [2] for a-c measurements. For
many years the circuit has been used widely by
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standardizing Iaboratories for measurements of in-
duetanece. Figure 1 shows a schematic of a well-
shiclded Maxwell-Wien bridge with Wagner arms for
elimination of errors w%ultmg from current diverted
to ground through leakage impedances, The in-
ductance, L, to be measured is placed in series with
a resistance, 7. I the componeuts of the bridge
arms shown in figure 1 were pure, the inductance
measured when the bridge is balanced would be

L=CRpRy, ¢8)
and to obtain the balance it s necessary that
R_I, ‘
]I S )L (2)

Fravre 1. The Marwell-Wien bridge circuit with complete

shielding and a Wagner ground.
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In practical situations it is not possible to obtain
completely pure components. The residuals in the
components contribute to the systematic errors, and
it is necessary to analyze the circuit sufficiently to
correct for these errors or to determine the maximum
uncertainty in the results if the errors are neglected.
Figure 2 shows the components of figure 1 with the
addition of appropriate residual components, but
without the Wagner arms. For example, the series
resistor, 7y of figure 1, in the inductance arm is repre-
sented in figure 2 by a pure resistance, 7z, in series
with an inductance, I;. The inductance, [, is a
lumped constant that may be either positive or nega-
tive depending upon the relative magnitudes of
inductive and capacitive effects. Although lumped
constant residuals are not independent of frequency,
the lumped constant concept provides a uscful
equivalent circuit at low frequencies. The other
resistive components are similarly represented by a
pure resistance and an cffective series inductance.
The variable capacitance, () is presumed to contain
an eoffective series resistance, r. The resistance
72, in figure 2 is the equivalent series resistance of the
inductor.

3. Equation of Balance

The impedances of the four bridge arms are

(R +jwl) (1+2r2C2)

Zre =TI pc ot N R gy, )
ZP =1, (73 ‘f‘jwlp; (4)
Zy=Ry+ry+je(L+1), (5)

and
Zsst+jWZs~ (6)

The derivation of eq (3) is given in the appendix.
‘When the bridge is balanced

Zypel=Zpls. )

After the multiplication indicated by eq (7) is per-

formed, the equation of imaginary components can

be written

(14 CHIR(L+-1)+ (Rp+r)l— Rslp— Epls]
=C{RRpRs+w(RRpls+ RRylp-+ BpRsl)orC

- wa(Rlpls+ Rplls‘l'Rsllp) — wallplsz'O]. (8)

Clonsiderable simplification of eq (R) is possible 1f
the residuals are expressed as time constants and

dissipation factors, as follows. Let
wr0=Dyg, (9)
-]?-_'T Ry (10)

The Mazwell-Wien bridge circwit showing the resid-
uols in the arms as lumped constants.

FiGcure 2.

l
Eli——-‘rp’ (1 1)
and
Is
E=T,s- (12)
With negligible error it will be found that
L= (7RPR3[1 -—~w2(1'p7's—|— TRT_P+ TR_TS) ‘D%
+w<TP+TS+TR)DC“wSTPTSTRDcl
) RpR
s (Zl’L—i_rL)TR‘i‘ i %RS (TP+ Ts) - lL, (13)

and a convenient simplification results if the small
terms in brackets are replaced by the symbol K.
Then the equation of balance becomes

L= CR o Ry (1K) — (Rt re) w28 (2 ptors)— L,
(14)
where
=’—w2(TPTs+TRTP+TRT.s) —D}
Fo(rptrstrR)De—PrprstrDe.  (15)

4. Effect of Stray Capacitance

_Before analyzing this equation in detail it is profit-
able to consider the effect of stray capacitance across
the terminals of the inductor. Such capacitance
can be introduced by the leads connecting the
‘inductor to the bridge (see fig. 3). For this analysis,
whatever capacitance exists within the case of -the
inductor is considered not a part of Cs, but rather
part of the inductor. It should be understood that
this internal shunt capacitance contributes to the

184



/ |
e | Ly L
BRIDGE Cs T‘ BRIDGE
TERMINALS TERMINALS R
| Ry
(0} {b)

Proure 3. The inductor under test, L, is connected lo bridge
terminals with leads having stray capacilance, Cs, between
them.

The bridge measires the equivalent inductance, L, which diflers {rom Lr
because of the stray capacitance.

effective serics inductance measured at the terminals
of the inductor, thereby causing the effective series
inductance to vary with frequency to some extent.

Figurc 3a shows the equivalent series inductance
under test, I.,, in series with the internal resistance
of the inductor, Rr. The stray ecapacitance, Cs,
external to the inductor is in parallel with Ly and
Rz. The bridge measurement does not completely
separate these elements but indiecates the effective
inductance, i, as shown in figure 3b. The effective
series induetance, Ly, at the terminals of the inductor
is related to the measured value, L, at the ends of
the leads by the approximation

R7Cs
Ly

LTzL<l——w2LT(7‘s+ Lo c) (16)

The derivation of eq (16) is given in the appendix.
The last three terms in parentheses constitute the
small correction terms resulting froin stray capaci-
tance. The first and the last of these vary as the
square of the frequency. The last term is usually
much the smaller of the two in practical situations.
The second correction term is not dependent upon
frequency and must never be overlooked as a source
of error in measurements of the highest accuracy.
For example, in the measurement of a 10 h inductor
having an internal resistance of 10,000 ohms, at the
end of a coaxial cable having a capacitance of 100 pf,
the error from neglecting the second correction term
is 0.01 h, equivalent to 0.1 percent of the quantity
measurcd. Often the first corrcetion term is sig-
nificant while the other terms are negligible, and the
effective series inductance then can be written

LTzL(l_CO2.ZT0,s). (17)
However, in this paper both the first and second
correction terms will be carried in the analysis to
follow.

3. Substitution Methods

The existence of the residuals and the consequent
correction terms in eqs (14) and (16) are detrimental
to good accuracy for residuals are often very difficult
to measure or estimate to better than an order of
magnitude. To eliminate the effect on measure-
ments of some of these residuals, substitution

methods are used. For example, if a standard
inductor of equal nominal value is substituted for the
test inductor and the difference of inductanee is
measured by changing € and ry, (or R) slightly, then
the residuals in the resistance arms of the bridge have
negligible effect on the measurement. Also, the
effect of the stray capacitance across the inductor
under test or across the standard inductor is much
reduced. The standard inductor must be very
accurately known, however.

If accurate measurements of large inductors are
contemplated and a shorting plug of negligible, or
relatively small, inductance is substituted for the
test inductor, Cs must be reduced to a negligible
value by complete shielding, and a Wagner ground
should be used. The effect of the residual, {;, in the
resistor, rz, is eliminated by this method only if [;, is
the same for the two conditions of balance.

The latter method, in which a relatively small
inductance replaces the inductor under test, can be
designated the ‘“zerc-substitution” method to dis-
tinguish it from the “equal-substitution” method,
in which the test inductor is replaced by a standard
of equal nominal inductance.

A gencral formula for inductance measurements by
substitution methods with the Maxwell-Wien bridge
nay be derived from the two balance equations,
the first with the inductor, Lz, in the circuit, and the
second with a standard, Ly, in its place. If the
small correction terms represented by K in eq (14)
are constant for both conditions of balance and if
(s is changed only slightly (to Csy) when the standard
inductor or shorting plug is connected, then with.
certain justifiable approximations

LT:LN+ (0— ON)RPRs[l - wZ(LT-}—LN)CS—}-K]
—w’LyLy (Os—‘ Csx)
+ (B — B Cs— (LL—len).

The. derivation of eq (18) is given in the appendix.
This equation is useful in showing the effect of un-
certainties in the magnitude of cifcuit components
on the determination of inductance.

If good quality components are used and the bridge
is well designed, the time constants that contribute
to K will be small. However, K cannot be doter-
mined with certainty and is somewhat variable
(dependent upon actual circuit constants). The
uncertainty in K sets an ultimate practical limit to
the accuracy of measurement of inductance by the
Maxwell-Wien bridge.

6. Zero-Substitution Method

When the zero-substitution method is employed
the small inductance, Ly, need not be accurately
known, but the capacitor, C, and the resistance
product, RBpRs, must be known with better accuracy
than that desired for the inductance, L. It 1s
possible to construct very small inductances that are
computable from geometry and dimensions. A short-
ing bar between two terminals has a finite inductance

(18}
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that can often be calculated or estimated well enough
to serve as the “zero-reference”, Ly, for bridge meas-
urements of inductors of much larger magnitude. If
the measured inductance is defined as the inerecase
in inductance when a shorting-link or switch associ-
ated with the inductor is manipulated in a specified
manner, then the aectual inductance of the short
circuit, Ly, is immaterial. The term (I,—70.~) can
be minimized if the resistance, rz, is induetance com-
pensated; i.e., if designed so that the effective series
inductance remains constant as the resistance is
varied. The uncertainties in this term may limit
the accuracy of measurement of small inductors. 1f
Cs is not extremely small, it is evident that the
uncertainty in Cg can have a significant effect on
the accuracy of measurement by this method. In
et (18) the term in brackets containing (s can
become objectionably large when large values of
mductanece are being measured. For example, if the
inductance being measured is approximately 10 h,
if Ce=100 pf10 pf, and if ©=10,000 radians per
second, then w?LCs=0.1040.01. Thus the correction
term is 10 percent of the measured inductance, and
the measurement uncertainty is 1 percent from this
cause alone, disregarding the probable Inck of validity
of the assumptions (when the correction terms are
so large) that were used to derive eq (18). The effect
of capacitance (s thus places a defimte limitation
on the accuracy which can be obtained by the zero-
substitution method with a grounded bridge. In
order to obtain better accuracy when o2l 1s large
it is necessary to use the “equal-substitution method”
(deseribed below) or to resort to separate shielding
on the inductor leads with an ungrounded bridge
using Wagner arms. This latter possibility involves
considerations beyond the scope of this puaper.

7. Equal-Substitution Method

If an accurately known standard inductance, Ly,
is substituted for the test induetor, Lz, the capaci-
tance, €, and the resistance produet, 2,12, need not
be so aceurately calibrated. Between the two con-
ditions of balance the only circuit componcents
changed are € and r;, both by small amounts. The
residuals D¢ and 7, are essentially unchanged in this
case, and all the other residuals are identical for both
conditions of balance. For the cqual-substitution
method the general eq (18) can be rewritten with
negligible additional error as

Ly=Ly+(('— () RpRs(1—20* L, Cs+K)

— L7 (Cs— Coy) + (R — RY) Cs— (—ley).  (19)

“In egs (18) and (19) the stray ecapacitances, (%
and Cyy, are not considered to be exactly equal;
however, it 1s expected that they will be maintaimed
nearly equal. The importance of this, even in equal-
substitution measurenments, is evident from eq (19).
In the comparison of 10 h inductors at an angular
frequeney of 10,000 radians per second, if the differ-
ence Cs—Coy is only 1 pf, then o?L% (Cs—Csy) is
0.01 k. This error of 0.1 percent shows the impor-

tance of maintainiug s nearly constant during
the substitution.

The term (I,—Izy) can be reduced to a minimum
by employing an adjustable resistor, ry, having m-
ductance compensation. Unecertainties in this term
may limit accuracy if the resistances of the test and
standard induetors differ greatly, and the inductance
compensation of the resistor, r,, is inadequate. The
adjustable resistor is in series with the inductor and
is conueected to the grounded corner of the bridge
as shown in figure 2. If) instead, this resistor were
connected to the ungrounded end of the inductance
arm of the bridge, the capacitance to ground from
the several decades of this resistor would shunt the
inductor, and as the resistance is varied to accom-
modate inductors having different internal resistance
the change in stray capacitance would cause an error
that would be difficult to correet. If one end of the
resistor is grounded, and if care is taken to keep
the resisrance ns low as possible, the eapacitance to
ground within the resistor merely shunts the resist-
ance, contributing to the effective residual in-
duetance, I, which is generally insignificant.

The torm (RZ—/12%)(): deserves speecial attention
because it is directly dependent upon the effective
series resistances of the inductors. As an example
of the effect of this term, consider that, in the meas-
urement of a 10 h inductor, R;=10,000 ohms,
Ry=:8,000 ohms, and Cs=100 pf. Then the term
(R3—R%)(s=0.0036 h, nearly 0.04 pereent of the
quantity measured. This correction, being inde-
pendent of frequeney (if skin effect may be noeglected)
exists even at low frequeneies, at which most of the
other correction terms are negligible.

If the time constants, 7p, 75, and 75, are 1 psec or
less and J); is 0.001 or less (these are conservative
but reasonable estimates for conunercially available
components), and the angular frequeney. is 10,000
radians per second, the magnitude of K is less than
0.0003. For a 1 pereent difference in inductors, if
this term were neglected the resulting error would
be only 3 ppm of the measured inductance.

Thus, the equal-substitution method can be em-
ployed withoul the unecessity of using a Wagner
ground providing eare is taken to keep the stray
capacitance, (%, reasonably smmall and nearly con-
stant and to apply corrections to the measured
values to offset errors resulting from the difference
“in the internal resistances of the inductors.

8. Effect of Frequency Difference

It has been assumed that the frequency of the
a-¢ supply is stable. If the frequency, wy, when

1o dsnd inductor 15 111 the cireuit 1a

s iy not caual o
ULLU Sudiiiudiu

not cqual to
the frequency, «, when the test inductor is conmected,
there can be an error resulting from the stray capaci-
tance, Cs. A difference of frequency between the
test balance and the standard balance will necessitate
the addition of the term

INnGUeTor 1s 11 Tud Cirdule is

— CslgLy(e*~ i)
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to the right side of eq (18), and since w=wy in any
practical case, this can be factored to produce

- QLOOSLTLN (O)*‘ (—"N) .

Since Lp=Ly for the cqu&l—substltunon method,
the additional term to be added to eq (19) is

- Zw(j,s 1% (w—— w;v) .

If ©=10,000 radians. per sccond, wy==10,010
radians per second (a 0.1, differ encc), and 09—100
pf, for the measurement of a 10 h inductor by the
equal-substitution method the magnitude of the
correction term is 0.002 h, an error of 0.02 percent.
It is important to realize that this analysis of the
effect of frequency variation does not account for
the change of effective series inductance with fre-
quency resulting from eddy currents, skin cffect, or
distributed capacitance within the inductors.

9. Calibration of Inductors

In recent years standard inductors having good
stability have become available in a. wide range of
nominal values. These have made accurate meas-
urements by the equal-substitution method feasible
and convenient. Several complete sets of standards
are maintained in the laboratories of NBS both at
Washington and at Boulder, and are used regularly
for calibrating similar standards submitted for certi-
fication. " The values assigned to NBS working
standards ultimately depend upon a computable
induector or capacitor.

The equal-substitution method can be utilized
with a variety of a-c bridge circuits. The essential
requirements are that the bridge have good short-
time stability, adequate resolution, and means for
externally equalizing the storage factor (@) of the
inductors being compared. An advantage of the
equal-substitution method is the lessened need for
accuracy of adjustment of the bridge components
because the bridge is used merely to measure small
differences. A number of commercially available
bridges embody the Maxwell-Wien bridge circuit to
which the analysis given in this paper is primarily
devoted. Itis almost invariably necessary, however,
to improve their resolution by adding a calibrated
variable capacitor in parallel with those built into
the bridge.

The resistor, 7, is partially inductance com-
pensated and is connected in series with the cable
connecting the inductors to the bridge. It has been
determined that the existing variations of inductance
are negligible relative to the inductance being
measured by -this method. This resistor may be
regarded as serving the purpose of externally
equalizing the @ of the standard and test inductors.

It is seldorn necessary 1o apply a correction for the
term (R3—R%)Ce in eq (19). On rare occasions
when this term is significant, a erude measurement of
R, and Ry ie adequate.

The resistance product (range) in the bridge is ses
so that the difference between the test and the
standard mmductors can be accommodated by adjust-
ment of the externally connected variable capacitor
and resistor, the other bridge controls being lefy
unchanged.

The analysis of errors in the Maxwell-Wien bridge
eircult deseribed in this paper was carried out as parn
of the investigation of the feasibility of adopting the
equal-substitution method for the rapid and conven-
1ent measurement of inductance,

The use of the equal-substitution method for the
precise comparison of induclors at the Eleetronic

Calibration Center, NBS, Boulder, Colo., was
instigated by Chester Peterson, NBS, Washington,
D.C. The author is indebted to Mr. Peterson for

helpful comunents and suggestions pertaining to this
paper.
10. Appendix: Derivation of Equations

Equation (3) 1s derived from the equation of the
impedance of Zg and Zy in parallel.

a1 e
ZRC_—]f *gwl (J)/'O‘_j

1 @wClerC4-j)

TRl T T
_ 14O 4w ClarC+7) (R +jol)
(P +jwl ) (1+?r2C™
Therefore
7 (R 4gwl) (1 +w?r2C?)
RC™

12O O (wrOF 5) (B +jel)

Equation (8) is obtained by substituting eqs (3),
(4), (5), and (6) mnto eq (7), giving

(142 C%) (B jol)[((Ret-r1) + jo(L4-11)]
=[14¥?C*+oC{wrC+5) (R +jwl))

(Bptjolp) (B s+ jols).
from which the equation of imaginary components is

(I4rPCYR(L+1)+ (By+r)l—Rslp—Rpls]

=C[RRpRst+w(RRpls+RRslp+R pR sl)wrC

— o (Blplst+Bplls+R sl p)— ol plgwrC).
Equation (16) describes the effect of stray capac-
itance. Figure 3a represents an induetor, Ly, having

an internal resistance, Ry, connected to the bridge
terminals by a cable having shunt capacitance, Ci.
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The impedance of this crcuit, Z, is derived as follows

1 1 .
VA P g

7_ (L’T+ij T)(l——szTC’s——ij TCS)
T (1= L Csr jol 1Cs) A —wPL,Cs— juR 7Cs)’

R 490l Ly(1 —w* LaCs) — p;csl_

4= (1—?L,Cs) Fo*R%

In the equivalent cireuit shown in figure 3b
Z=R+juL,

and from the two preceding equations it is evident
that

L (1 w2L7*05) ]l’; (yq

L= (1—w?LpCs)+w?RECE

and, with negligiblc error,

2
LT (1 ‘—LO2LT(/15"‘RZOS>
T

=, crarmicy

It should be noted that the discarded term,
«*L2C%, in the denominator is always much smaller
than the term, 20w?LrCs, which is usually much
smaller than 1 in practical inductance measurements
at low audiofrequencies. Since the terms in paren-

theses, other than 1, are small, this equation can be-

solved for L, and simplified by neglecting higher
order terms.

7Cs

Lo~L (1~sz¢03+ +wn0)

Equation (18) is obtained from the following two
equations which are derived from eq (14) modified
according to eq (16)

Lo CR By (1—erL py BFs
i riig WL 3+ ] (]+K>

,,P Ps

(LL‘?””L)TR-F" (rpFrs)—

and

Ly—CyR R (1—&1:\ o Bl fﬁ") A+E)

Pqu

—(Rpytriv)tet+—5— (pF+7s)—

In eq (15) it will be noted that at the higher fre-
quencies the first term in K is the largest tcnn, and
that at lower frequencies all terms in K are small
and often negligible. The first term in K is in-
dependent of DC, which may vary slightly between

reduced to — Ly Ly(Cs—Csy).

the two conditions of balance; hence, the assump-
tion that K is constant is justifiable. In the above
equations since

CRpRs~Ly

and
CyRpR s>~ Ly

and

(RL+7'L) =~ (R vt TLN)

CRpRR3Cs/Lr~R2Cs and
ONI ? PR sR 4%'05.\'/ L\' =R % C SN

Therelore,

LT—L_V= [(CY'— G\Y>I£PRS—]EPI£S(02(OLTGS'

— Oy Ly Con) +R3Cs— RECsy)(1+K)— (I — ).
The factor (CL;Cs—CylyCsy) can be expanded as

follows:

(CLACUs— Uy LyCsy) = (C— C) (LrCs+ Ly Csy)

+ OVL TCS —CLyCoy.
If Cs and Csy can be reduced to zero, this factor
becomes zero, and the equation is greatly simplified.
However, if US 1s not zero, but if (s approximately
equals Csy,

CL;Cs— Oy LyCsy=(C—Cx)(Lr+ Ly)Cs

+CnLrCs— CLyCsy

and

Li—Ly= { (0—‘ ON)RPRS[I - wz(LT+LN) Os]

- RP} 3,;(.02( GN’LTOS - CLN CSN)
+ (I —R3)Cs} A+EK)—(l—lpy),

and with negligible error the substitution COyRpRs
=Ly and CRpRs=Ly; can be made in the small
correction terms. The second term in braces can be
If the terms under
consideration are not relatively small, the approxi-
mations are not valid.

Neglecting second order terms, the above equation
can be simplified, giving eq (18):

LT:'LN+ (C_ CN)RPRSU - ‘-"Q(LTJT‘ L.v) Cs + K]
—o? JTLN((-A-'S—‘ Csx) + (Rzr — L)f’v) Cs— (ZL—lw)-
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