

### **Ramgen Power Systems**

### Workshop on Future Large CO2 Compression Systems

DOE Office of Clean Energy Systems, EPRI, and NIST National Institute of Standards and Technology (NIST) Headquarters, Gaithersburg, MD 20899 March 30-31, 2009



Some of the information contained in this document contains "forward-looking" statements". In many cases you can identify forward-looking statements by terminology such as "may," "will," "should," "expects," "plans," "anticipates," "estimates," "predicts," "potential," or "continue," or the negative of such terms and other comparable terminology. Forward-looking statements are only predictions and as such inherently include risks and uncertainties. Actual events or results may differ materially as a result of risks facing Ramgen Power Systems, LLC ("Ramgen") or actual results differing from the assumptions underlying such statements. These forward-looking statements are made only as of the date of this presentation, and Ramgen undertakes no obligation to update or revise the forward-looking statements, whether as a result of new information, future events or otherwise. Your decision to remain and receive the information about to be presented to you shall constitute your unconditional acceptance to the foregoing.

-Two-stage 100:1 Pr CO2 Compressor

technology

-30:1; 42% LHV ASCE Engine

-High velocity combustor

-Supersonic expander

**–Product embodiments** 

Primary technology innovations

Privately-held R&D company founded in 1992

-Supersonic stationary air & gas compressors

Focused on unique applications of proven supersonic aircraft

- -Airborne APU
- -H<sub>2</sub> fuel combustor















### **Ramgen Compressor Technology**

## **Shock Waves to Supersonic Inlets**





Schlieren Photo of Projectile with Shocks



Schlieren Photo of Inlet Center-body and Cowl with Shocks



### 2-D Mixed Compression Inlet Model

- Initial External Shock System Followed
   by Internal Shock System
- Throat Bleed Slot For Inlet Starting
- Side Window For Schlieren Photography



### **F-15 2-D Planar Supersonic Inlet**





### **Rampressor Rotor Development**





## **Typical Rotating Supersonic Flow Path**



- Rotor Flow Path:
  - 3 Supersonic Compression Inlet Flow Paths On Disk Rim
  - High Efficiency, Compact Compression
  - Minimal Number of Leading Edges
  - Flow Path Geometry Similar For Different Pressure Ratios
- Combination of Supersonic Flight Inlet & Conventional Axial Flow Compressor Aerodynamics:
  - Rotor Rim Radius Change Produces Compression
  - 3 "Blades" (Strakes) Do Minimal Flow Work
  - Axial Inflow/Outflow

### RAMGEN POWER SYSTEMS

## **Compression Applications vs. Pr/Tip Speed**





### **Enter Dresser-Rand**



## **Dresser-Rand Invests in Ramgen**

- Dresser-Rand invests in Ramgen's "game-changing technology"
  - Support on-going CO2 compressor development
  - Satisfy DOE matching funds requirement
  - Consistent with strategy to be technology leader in our industry
  - Extend served market into Electric Utility industry
  - Invest up to \$49 million
    - Fund development & demonstration
    - Obtain an option to purchase assets
- Dresser-Rand is consistently ranked among top three manufacturers in its served markets
  - Turbomachinery
  - Reciprocating compressors
  - Steam turbines
- #1 in North America
- Leading supplier of CO2 compressors
- Global sales & service presence
- Strong products & brands
- Established customer base



## **Dresser-Rand Historical Overview**





### **Dresser-Rand Heritage**





## **Dresser-Rand's Global Presence**





### **Dresser-Rand Key Clients**



Note: Partial list as of December 2007.



## **Products for All Served Markets**





### **World Class Test Facilities**







# **Ramgen CO<sub>2</sub> Compressor Product**

- 100:1 CO2 compressor ⇒ 2-casings/2-stages/Intercooled
  - No aero Mach# limit
  - 10+:1 pressure ratio; 400°F temperature rise
  - 1400 fps tip speeds; Shrouded rotor design
- Single-stage, discrete-drive
  - Single stage per drive optimizes specific speed match
  - Simple single-step external gearbox or high speed direct drive
  - Lower mechanical losses
- Variable speed option
  - Match MW and temperature changes with speed changes
- Configuration adapts easily to match process requirements
  - Mismatched thru-flow
  - Side stream additions
- Active IGV Flow control on each stage
  - Match CO2 capture system constant pressure requirement
- Heat exchangers
  - Inter/aftercooler can be the CCS or power plant
  - "Compressor" heat exchanger cost can be eliminated
  - Eliminate or substantially reduce cooling tower requirement
  - Eliminate or substantially reduce cooling tower make-up water
  - 3x LMTD ⇒ heat exchangers with 1/3 the surface area
- 1/10th the physical size facilitate space constrained retrofits
- 1/2 the installation cost



**Ramgen Discrete Drive HP Stage** 



**Ramgen Compressor Rotor** 

### **Compressed Air & Gas Handbook**



### 660

Dynamic Process Compressors Chap. 11

can be handled with sufficient accuracy for most purposes when the unit is a typical single-stage air compressor. A little more discretion must be used on multistage compressors handling heavy gases, however, because fan-law deviation can become quite significant for speed changes as small as 10 per cent.

### Choke Effect

The basic slope of the head flow curve has been discussed at some length, but the choke or stonewall effect that occurs at flows higher than design flow and which must be superimposed upon the basic slope (Fig. 11.19) has not yet been discussed.

Just as basic slope is controlled by impeller-tip vector geometry, the stonewall effect is normally controlled by impeller-inlet vector geometry. In Fig. 11.24, vector  $U_1$  may be drawn to represent the tangential velocity of the leading edge of the blade

similar to of the inh radially (f relative to V. At des shown.

...it is conventional practice to limit the Mach# to 0.85 or 0.90 at design flow.

### Mach Number Considerations

The magnitude of  $V_{rel}$  compared to the speed of sound at the inlet pressure and temperature is called the relative inlet Mach number. It is ne magnitude of this ratio that indicates stonewall effect in a conventional stage. While true stonewall effect should theoretically not be reached until the relative inlet Mach number is unity, it is conventional practice to limit the Mach number to 0.85 or 0.90 at design flow.

It is evident from Fig. 11.24 that, for a given rpm, the magnitude of  $V_{rel}$  will diminish with decreasing flow, since V is proportional to flow. If  $V_{rel}$  decreases, then relative inlet Mach number decreases, so the stonewall effect is normally not a factor at flows below design flow. It is also evident that at low flows the direction of  $V_{rel}$  is such that the gas impinges on the leading side of the blade, resulting in positive



Figure 11.24 Impeller inlet geometry and velocity diagram.



### Significance of Gas Weight

Since values of  $U_1$  are typically in the 500-fps (152.4-m/second) range and values of V in the 250-fps (76.2 m/second) range, it is obvious that, since the speed of sound for air at 80 deg. F (26.7 deg. C) is 1140 fps (348 m/second), lighter gases suffer no true impeller stonewall problems as described, even at high overloads. Some head loss below the basic slope will be observed, however, in even the lightest gases, due in part to increased frictional losses throughout the entire stage and in part to the extreme negative incidence at high overloads.

The lightest common gas handled by conventional centrifugal compressors for which stonewall effect can be a definite factor is propylene with a sonic speed of 740 fps (225.7 m/second) at -40 deg. F (-40 deg. C). In order of increasing severity are propane at 718 fps (219 m/second) at -40 deg. F (-40 deg. C), butane at 630 fps (192.1 m/second) at -20 deg. F (-29 deg. C), chlorine, and the various Freons. The traditional method of handling such gases is to use an impeller of larger than normal flow area to reduce V, and run it at lower than normal rpm to reduce  $U_1$ , thus keeping the value of  $V_{rel}$  abnormally low. This procedure requires the use of an abnormally large frame for the flow handled.

### Inducer Impeller Increases Head Output

Much development work has been done in recent years toward the goal of running impellers at normal speeds on heavy gases in order to reduce hardware costs to those incurred in the compression of light gases. One approach has been to use inducer impellers (Fig. 11.25). The blades on this impeller extend down around the hub radius so that the gas first encounters the blade pack while flowing axially. Figure 11.25 shows the vector analysis at the inducer outer radius. Assuming that the inducer radius is the same as the leading edge radius of the conventional radial inlet impeller, the vector geometries of the two are identical.

The advantage of the inducer lies in the fact that, as we move radially inward along the blade leading edge, the value of  $U_1$ , and therefore of  $V_{rel}$  and Mach number, decreases. As we move along the leading edge of the conventional impeller, the vector geometry remains essentially constant. It can be seen, therefore, that while maximum Mach number for the two styles is the same, the average Mach number for the inducer



### **Technology Development Needs & Direction**



## **Fossil Fuel Power Plant – CC&S**

- All fossil fuel power plants produce some level of CO2
- CO2 compressor power
  - Advanced pulverize coal 8-12%
    - 600MW ⇒70MW ⇒93,000 hp
  - IGCC 5%
    - 600MW ⇒30MW ⇒40,000 hp
  - CCGT 8%
    - 400MW ⇒32MW ⇒43,000 hp
- 100 new power plants annually
  - \$1.5 billion annual compressor market
- Retrofit opportunity
  - \$0.7 billion annual compressor market

**Over \$2 Billion annual market opportunity** 





# **CCS Technologies**



- Amine systems
  - Suction pressures 15; 22; 25; 30 psia
  - Regeneration heat required
    - Conventional amines 1550 Btu/lbm-CO2
    - Advanced amines 1200 Btu/lbm-CO2
    - Really advanced amines 800 Btu/lbm-CO2
  - -8% parasitic power
  - Post combustion New & Retrofit
- Ammonia-based systems
  - Suction pressures ~ 30-300 psia
  - Regeneration heat required
    - Aqueous ammonia 493 Btu/lbm-CO2
    - Chilled ammonia TBD
  - 4% parasitic power
  - Post combustion New & Retrofit
- Chemical Looping
  - Suction pressure atmospheric

- Selexol/Rectisol
  - Suction pressures 50, 150 & 300 psia with sidestreams
  - Regeneration heat required for the Claus Plant
  - 5% parasitic power
  - IGCC (new) only
- Oxy-fuel systems
  - Raw gas feed 15 to 500 psia
  - Twin purified suction streams ~150 & 300 psia
  - 12-13% parasitic power
  - New plants only
- Membrane Separation & Enzyme Processes
  - Suction pressures from <3.0-14.7 psia
- Discharge pressures 1200;1600; 2000; 2215; 2500; 2700; 2900 psia

## **Baseline Case for Comparison**



### **Data Provided**

- Case 3 ASME TurboExpo Berlin June 2008
- Case 12 in the Baseline Cost & Performance Study – May 2007
- Compressor 6-stage integrally geared design
- 84% isentropic efficiency all stages
- Inlet conditions 23.52 psia; 69°F inlet temperature; 92.4% RH
- Discharge conditions 2215 psia
- Cooling water 60°F
- Stage pressures
- 1,259,600 lbm/hr
- 2 units

|           | Stage |        |        |        |         |         |  |  |  |
|-----------|-------|--------|--------|--------|---------|---------|--|--|--|
|           | 1     | 2      | 3      | 4      | 5       | 6       |  |  |  |
| P1 - psia | 23.52 | 52.00  | 113.01 | 248.00 | 545.00  | 1200.00 |  |  |  |
| T1 - °F   | 69    | 69     | 69     | 69     | 69      | 100     |  |  |  |
| P2 - psia | 53.65 | 115.80 | 253.00 | 550.00 | 1205.00 | 2219.99 |  |  |  |
| Pr        | 2.23  | 2.28   | 2.24   | 2.22   | 2.21    | 1.85    |  |  |  |

### **Baseline case needs realistic assumptions**

### Assumptions

- Intercooler approach temperature 9°F
- Interstage pressure drop  $DP = (P2^{0.7})/10$ ; but not greater than 5 psi
- Mechanical loss 1.5%
- Drying between stages 3 & 4
- Partial cooling between stages 5 & 6
- 46,900kW Published (2 unit total)
- 46,898kW Calculated with these assumptions





### **Immaculate Compression**









# **Compressor Power & Things That Affect It**

- The basic inputs
  - Gas composition, including moisture content
  - Mass flow
  - Inlet pressure
  - Inlet temperature
  - Discharge pressure
- Often forgotten
  - Cooling media & temperature
    - Air
    - Water-cooled
    - Process cooled
  - Interstage assumptions
    - Pressure drop
    - Design practice
    - Fluor estimate  $\Delta P = P2^{0.7}/10$ ; not to exceed 5 psi
    - Intercooler/heat exchanger approach temperature or Cold Temperature Difference – CTD
    - 15°F CTD normal approach temperature
  - Mechanical losses
    - Compressor
    - Gearbox
  - Sparing philosophy (i.e., 2 x 50% + 1)

Only the first stage is affected by the inlet conditions....all the other stages are affected by interstage assumptions.



- CCS Application Specific Issues
  - Capture system flash levels & control requirements
    - Pressure
    - Mass flow additions
  - Water knockout
    - Process location (i.e., pressure)
    - Method Glycol/Molecular sieve/PSA
  - CO2 compressor inlet pressure
  - Heat integration
  - Materials of construction
    - Heat exchangers
    - Piping
  - Discharge pressure



## Heat Exchangers are a Big Deal!





## **Retrofit Capture Cost Assumptions**

### • "Carbon Dioxide Capture from Existing Coal-Fired Power Plants"

- DOE/NETL 401/110907 Revised November 2007
- AEP/Alstom Conesville Unit #5
- Base line & Case 1

### • Process Conditions

- P1 19 psia
- T1 115 F
- P2 2015 psia
- Illinois #6 @ 1.80/mmBtu
- 90% capture
- 85% capacity factor

### • Financial Assumptions

- Make-up power 6.4 cents/kWh
- Burden rate 2.28

### Baseline Compressor Horsepower

| _ | CO2 compressor             | 31,262    |
|---|----------------------------|-----------|
| _ | Propane refrigeration      | 23,321    |
| _ | CO2 product pump           | 2,932     |
|   | Total                      | 57,515 hp |
| _ | Compressor only equivalent | 56,800    |
| _ | Analysis                   | 56,800 hp |

### Description of Plant Retrofit for Incorporating Carbon Capture Technology

A simplified process flow diagram for the study unit, modified with the addition of the postcombustion amine-based capture system, is shown in below. This simplified diagram is applicable to each of the  $CO_2$  capture cases included in this study. The operation and performance of the existing boiler, air heater, and electrostatic precipitator (ESP) systems are identical to the Base Case for all the capture cases investigated and are not affected by the addition of the post-combustion amine-(MEA)-based  $CO_2$  recovery systems.



### Simplified Process Flow Diagram for Power Plant Modified with the Addition of an Advanced Amine Based $CO_2$ Capture System

The flue gas desulfurization (FGD) system is modified identically for each of the cases with the addition of a secondary absorber to reduce the SO<sub>2</sub> content of the flue gas entering the new amine system to below 10 ppmv. Recovery of less than 90% CO<sub>2</sub> (Cases 2, 3, and 4 with 70%, 50%, and 30% recovery respectively) is accomplished by bypassing a fraction of the total flue gas stream around the new CO<sub>2</sub> absorber. Flue gas bypass was determined to be the least costly way to obtain lower CO<sub>2</sub> recovery levels.

## **Conventional CO<sub>2</sub> Compression**

57

28

\$640/kW

<u>109</u> \$194M

6.07

4.74

2.70

13.51

122%



- CO2 compressor power
  - Advanced pulverize coal 9.1%
  - 463MW ⇒42MW ⇒56,800 hp
- Capital Cost for 56,800 hp

| _ | 2 x | 50% | operating | units | @ | \$1000/hp |
|---|-----|-----|-----------|-------|---|-----------|
|---|-----|-----|-----------|-------|---|-----------|

- 1 x 50% spare
- Burdened Installation cost
- Total Cost
- \$194M/303MW =

### • Cost of Electricity (COE)

- Baseline w/o CCS
- Capture system
- Compressor
- Total cents/kWh
- Increase in COE for CCS

### • Cost per tonne

- Capture system41- Compressor23- Total\$64

### Compression Costs are 36% of Total Cost/Mt of CO2

| Heat recovery – Btu/lbm-CO2         | 2          |
|-------------------------------------|------------|
| – Regeneration Heat                 | 1548       |
| <ul> <li>Heat recovery</li> </ul>   | <u> </u>   |
| Net Btu/lbm-CO2                     | 1548       |
| Plant output                        |            |
| <ul> <li>Original rating</li> </ul> | 463        |
| – De-rating @ 1548 Btu/lbm          | <u>160</u> |
| – Net                               | 303 MW     |
| – Value @ 6.4 cents/kWh             | \$62M/year |



Figure ES-3: Plant Performance Impact of Retrofitting a Pulverized Coal-Fired Plant at Various Levels of Carbon Capture



**MAN Turbo** 

Ramgen

# **Ramgen CO<sub>2</sub> Compression w/Advanced CCS**

| CO2 compressor power                        |                      | <ul> <li>Heat recovery – Btu/lbm-CO2</li> </ul> |                                |  |  |  |  |
|---------------------------------------------|----------------------|-------------------------------------------------|--------------------------------|--|--|--|--|
| – Advanced pulverize coal – 4.2%            |                      | – Regeneration Heat                             | 450                            |  |  |  |  |
| – 463MW ⇒20MW ⇒26,000 hp                    |                      | – Heat recovery @ 230F                          | <u>93</u>                      |  |  |  |  |
| , , , , , , , , , , , , , , , , , , ,       |                      | Net Btu/lbm-CO2                                 | 357                            |  |  |  |  |
| Capital Cost for 26,000 hp                  |                      | – HR potential @ 100F                           | 87                             |  |  |  |  |
| - 2 x 50% operating units @ \$400/hp        | 11                   | *                                               |                                |  |  |  |  |
| – 1 x 50% spare                             | 5                    | • Plant output                                  |                                |  |  |  |  |
| <ul> <li>Installation cost</li> </ul>       | <u>20</u>            | – Original rating                               | 463                            |  |  |  |  |
| – Total Cost                                | \$ <mark>36</mark> M | – De-rating @ 450 Btu/lbm                       | 75                             |  |  |  |  |
| - \$36M/388MW =                             | <b>\$93/kW</b>       | – Net                                           | $\overline{388}$ MW            |  |  |  |  |
|                                             |                      | – Value @ 6.4 cents/kWh                         | \$22M/year                     |  |  |  |  |
| Cost of Electricity (COE)                   |                      |                                                 | φ <b>22</b> 101, <b>y cu</b> 1 |  |  |  |  |
| – Baseline w/o CCS                          | 6.07                 |                                                 |                                |  |  |  |  |
| – Capture system                            | 2.02                 | Pressure p in bar                               | 5                              |  |  |  |  |
| – Compressor                                | 0.47                 | 5.0 20 20 20 20 20 20 20 20 20 20 20 20 20      | 200                            |  |  |  |  |
| – Total cents/kWh                           | 8.56                 |                                                 | 180                            |  |  |  |  |
| <ul> <li>Increase in COE for CCS</li> </ul> | 41%                  |                                                 | 160                            |  |  |  |  |
|                                             |                      |                                                 | 140                            |  |  |  |  |
| Cost per tonne                              |                      |                                                 | 120                            |  |  |  |  |
| – Canture system                            | 2.2                  |                                                 |                                |  |  |  |  |
| – Compressor                                | 5                    |                                                 |                                |  |  |  |  |
| – Total                                     | \$28                 |                                                 |                                |  |  |  |  |
|                                             | Ψ <b>Ξ</b> Ο         | 8 7 6 5 4 3 2 Intercooling                      | 20 La                          |  |  |  |  |
|                                             |                      |                                                 |                                |  |  |  |  |

CC&S cost can be reduced by 56% from \$64 to \$28/tonne CO<sub>2</sub>

### RAMGEN POWER SYSTEMS



## **PT Diagram & Supercritical Phase**



Separate Phases Visible-**Meniscus** Clearly Observed

- Increase in
  - Temperature-Diminished Meniscus

Further Increase in Temperature-Gas & Liquid **Densities more Similar** 





At Critical P & T-Distinct Gas & Liquid **Phases no Longer** Visible "Supercritical Fluid" with Properties of Both Liquids & Gases

- Compression process transitions from superheated to supercritical phases
- Avoids liquid (sub-cooled) phase



0900-01293



## **Ramgen Heat Recovery**

|                                 | Low Pressure Stage | High Pressure Stage |
|---------------------------------|--------------------|---------------------|
|                                 | 22 - 220 psia      | 220 - 2200 psia     |
| Compressor Shaft Input Work     | 90.6 Btu/lbm       | 87.0 Btu/lbm        |
| Discharge Temperature           | 489 °F             | 509 °F              |
| Lower Recovery Temperature      | 100 °F             | 100 °F              |
| Recovered Heat                  | 92.4 Btu/lbm       | 178.8 Btu/lbm       |
| Recovered Heat/Compression Work | 102%               | 205%                |

- Heat available in the HP hot discharge CO2 is more than double the compressor shaft work
- 153% of the combined LP + HP shaft work is available as heat in the discharge CO2



## **Optimizing Compressor Selection**







# **"The Convenient Half-Truth"**

|                                           | PC        |           | SCPC      |           | IGCC <sup>*</sup> |           | NG        | CC        |
|-------------------------------------------|-----------|-----------|-----------|-----------|-------------------|-----------|-----------|-----------|
|                                           | w/out     | with      | w/out     | with      | w/out             | with      | w/out     | with      |
| Gross Power                               | 583,315   | 679,923   | 580,260   | 663,445   | 770,350           | 744,960   | 570,200   | 520,090   |
| Net Power                                 | 550,445   | 549,613   | 550,150   | 545,995   | 640,250           | 555,675   | 560,360   | 481,890   |
| Coal Flowrate - lbm/hr                    | 437,699   | 646,589   | 411,282   | 586,627   | 489,634           | 500,379   | -         | -         |
| Natural Gas Flowrate - lbm/hr             | -         | -         | -         | -         | -                 | -         | 165,182   | 165,182   |
| Net Plant Heat Rate - Btu/kW-hr           | 9276      | 13724     | 8721      | 12534     | 8922              | 10505     | 6719      | 7813      |
| Net Plant Efficiency - HHV%               | 36.8%     | 24.9%     | 39.1%     | 27.2%     | 38.2%             | 32.5%     | 50.8%     | 43.7%     |
| Carbon Factor - Ibm-CO2/mmBtu             | 203.3     | 203.3     | 203.3     | 203.3     | 196.7             | 196.7     | 118.5     | 118.5     |
| Capacity Factor                           | 85.0%     | 85.0%     | 85.0%     | 85.0%     | 80.0%             | 80.0%     | 85.0%     | 85.0%     |
| Capture %                                 | 0.0%      | 90.0%     | 0.0%      | 90.0%     | 0.0%              | 90.0%     | 0.0%      | 90.0%     |
| Capital Cost - \$/kW                      | \$1,549   | \$2,895   | \$1,575   | \$2,870   | \$1,813           | \$2,390   | \$554     | \$1,172   |
| LCOE - \$/kW-hr                           | \$ 0.0640 | \$ 0.1188 | \$ 0.0633 | \$ 0.1148 | \$0.0780          | \$ 0.1029 | \$ 0.0684 | \$ 0.0974 |
| CO2 lbm/MW-hr Net Output                  | 1886      | 278       | 1773      | 254       | 1755              | 206       | 797       | 93        |
|                                           | _         |           |           |           |                   |           |           |           |
| Capture % to Achieve 797 or 278 lbm/MW-hr | 57.7%     | 71.4%     | 55.0%     | 68.7%     | 54.6%             | 61.4%     | 0.0%      | 70.0%     |
|                                           | 797       | 797       | 797       | 797       | 797               | 797       | 797       | 278       |
| Note: Baseline Report Cases 1 & 2         |           |           |           |           |                   |           |           |           |

 $tons / year = (power_{net} \times 8760 \times capacity factor \times heat rate_{net} \times carbon factor) / 10^6$ 

 $CO_2 lbm / MWh_{net} = heat \ rate_{net} \times carbon \ factor \times (1 - capture \%) / 10^3$ 

NETL Cost & Performance Baseline NETL May 2007



# **Technology Development Needs**

### **Compressor System**

- Compressor
- Drives
  - High power 2-pole motor
  - High power VFD's
  - Steam turbine drives & control
- Gearboxes
  - Industry capacity
  - Auxiliary drive
- Coolers conventional service
  - Air-cooled
  - Water-cooled
- Heat Recovery Coolers
  - Boiler feedwater
  - Solvent regeneration
  - Coal drying
  - Air pre-heater
  - Flue gas re-heating

### **Capture System**

- Improved solvents
  - Higher loading
  - Reduced regeneration heat
  - Improved thermal stability
  - Lower regeneration temperatures
  - Lower cost
  - Faster reaction kinetics
  - High pressure CO<sub>2</sub>

### **Design & Analysis Tools**

- NIST REFPROP CO2 Mixtures with:
  - Water
  - CO
  - Argon
  - Oxygen
  - Ammonia
  - Hydrogen
- Heat exchangers for supercritical fluids
- Impurities & phase change models
- Generic capture system modeling capabilities – (Excel & ASPEN)
- Installed first cost & operating cost models
- Materials selection guidance

## **Questions?**



pete\_baldwin@ramgen.com 425-726-7272 (c)