

Leadership in ecoInnovation

Assessing Microgen in Canada

Hajo Ribberink, Kathleen Lombardi, Evgueniy Entchev, Erik Thorsteinson

CanmetENERGY Research Centre – Ottawa Natural Resources Canada NIST Microgen Workshop - Oct 27, 2010

Contents

- Introduction to microgen activities of CanmetENERGY
- Stirling Engine micro-CHP
 - Field experiments in Canada
 - Simulation studies
- Conclusions
- Questions

CanmetENERGY Microgen Activities

CanmetENERGY Microgen Activities

Solar Thermal PVT Micro-CHP

CanmetENERGY

Leadership in ecoInnovation

Natural Resources Ressources naturelles Canada Canada

Stirling Engine Micro-CHP

- CHP: Combined Heat and Power
 - More efficient than separate production
- Micro: Scale of one residence up to a couple of apartments, small commercial
- Stirling Engine micro-CHP assessed:
 - Electrical output: up to 750 W
 - Heat production: ~ 7 kW

Enhanced Deployment of Residential CHP Systems

Project Overview

- Objective: Address practical barriers to widespread use in Canadian homes
- Strategy: Assist market channel players to gain experience with technology
- Outcomes:
 - installation codes/standards/approvals
 - O&M knowledge
 - economic attractiveness for the delivery agent, end user, utilities
 - Canadian performance data

Outline of WhisperGen Deployment in Canada

- Canadian Centre for Housing Technology:
 - MkIV in Visitors' Centre (Jan-Sept 2005)
 - MkVb in test house (Feb 2009)
- Calgary: MkIV in occupied single family home (Dec 2007-May 2008)
- Ottawa: MkVb in occupied townhouse (March 2009 - present)
- Toronto: MkVb at Kortright Centre for Conservation vation (Toronto and Region Conservation Authority) (Apr-May 2010)
 CannetENERGY Leadership in ecolonovation

CCHT (2005)

- First 'market-ready' (Europe) AC Stirling installation in Canada
 - Electrical grid connection challenges identified
- Integration with gas-fired HWT and PV
- Performance data
 - Reliability, emissions, output capacity, cycle efficiency, seasonal efficiency

Calgary (2007/2008)

- MkVb designed for North American grid
- Occupied single family detached home
- Provided space and water heating
- Low cost instrumentation and web enabled datalogging

CanmetENERGY

Calgary (2007/2008)

- First occupied home gas and electrical certifications in Canada
- Integration with radiant floor heating and Latento XXL thermal storage tank with aquastat CHP controller
- Emissions test by NRCan
- Data owned by Enmax (Alberta utility)

CCHT (2009)

 Side-by-side energy comparison with reference house

ral Resources

Ressources naturelles

Canada

 Integration with forced air gas furnace

NRC Canadian Centre for Housing Technology

- Stirling provided space heat via heating coil at furnace inlet and DHW to indirect HWT
- Honeywell µCHP smart controller
- Instrumented by NRCan & NRC for energy performance evaluation and cost analysis

Ottawa (2009-)

- Townhouse with zoned forced air heating
- Stirling coupled to dedicated coil in air handler and to 60 gal tank for DHW storage
- Second coil in air handler to ground source heat pump
- Stirling controlled by Honeywell

Ottawa demonstration home for WhisperGen MkVb

Ottawa (2009-)

- First occupied home gas and electrical certifications in **Ontario**
- Integration with forced air / DHW combo system and ground source heat pump
- Navien boiler for performance comparison and backup
- Instrumented by NRCan for energy monitoring with web enabled datalogging

Toronto (2010)

Kortright Centre for Conservation (Toronto and Region Conservation Authority) concept drawing

- Environmental and renewable energy education and demonstration centre
- A duplex with each home showcasing different sustainable technologies

Toronto (2010)

- High visibility deployment
- Integration with radiant floors, multi-zone forced air system, and solar DHW heating
- High traffic space heating and unique DHW loads
- Honeywell µCHP smart controller
- Instrumented by Ryerson University

Benefit from Synergy between Field Experiments and Simulations

- Results from Field Experiments used to calibrate and validate Simulation Models
- Results from Simulations gave direction to next Field Experiments

Simulation Studies

- IEA Annex 42 study (2007)
 - Performance Assessment of Prototype Residential Cogeneration Systems in Single Detached Houses in Canada
- Performance forecasts of new technology are often too high
 - Only full load efficiency known
 - No insight in internal power consumption, heat losses
- This study used measured efficiency of prototype systems
 - 1 kW class Stirling Engine system
 - 5 kW class Solid Oxide Fuel Cell system

CanmetENERGY

System Schematic

Operating modes

- Heat load following
- Electric load following

Efficiencies (HHV) of Prototype SE System

CanmetENERGY

'Lessons Learned' from Prototype Stirling Engine System

- Real-life efficiency of SE systems can be substantially lower than under full-load conditions
- GHG emission reduction potential is mainly determined by the *emission signature* of the local power grid
- Highest efficiencies and largest absolute emission reductions are obtained for *heat load following operation* in houses with high heating loads
- The SE systems must be *condensing* to make a difference compared to the reference system
- Internal power consumption and heat losses (e.g. from hot water storage) must be minimized

CanmetENERGY

Simulation Studies (2)

- NRCan follow-up work (2008)
 - Plausible Performance Forecast for Stirling Engine Residential Cogeneration Systems Applied in Single Detached Houses in Canada
- Apply 'lessons learned' from real-life performance of *prototype* systems to come to a plausible forecast of performance for *mature technology* systems

Mature Technology SE System

- Fuel input: 8.0 kW
- Electric output: 1.0 kWe
- Thermal output: 6.4 kWth
- Overall
 92% efficiency
- Power consumption
 - stand-by: 9 W
 - generating: 100 W
- Pumps: DC motor, 20 We
- Heat load following operating mode
- Applied in single detached house with average heating load in Toronto
- NOx emissions: 54 g/GJ fuel (NRCan test)

(12.5% efficiency)(79.5% efficiency)(condensing)

Reference Technologies

BEST AVAILABLE TECHNOLOGY

Condensing furnace:

- annual efficiency: 96%
- NOx emissions: 42 g/GJ fuel input
 - No regulations in Ontario
 - Current California limits used (40 g/GJ heated output)

DHW water heater:

- full load efficiency: **90**%
- annual efficiency: 75%
- NOx emissions: 53 g/GJ fuel input
 - No regulations in Ontario / current California limits used
- Same technology used for back-up burner and storage vessel of SE system
 CanmetENERGY

Grid Power and Emissions

Off-peak

- On-the-margin power production technology
 - SE power production displaces next plant to come on
- NRCan methodology to relate on-the-margin fuel source to Hourly Ontario Electricity Price (HOEP)
- Hourly values for GHG and NOx emissions
- Power prod. efficiency: natural gas: 51%, coal: 32%
- Upstream fuel cycle emissions included (off/on-peak)
- Transmission and distribution losses: 8% (off/on-peak)

On-peak

- Clean Energy Standard Offer Program (CESOP)
- 2 GE LM6000 single-cycle gas turbines
- Efficiency: 36% (HHV)
- NOx emissions: 5 ppm

GHG emissions (kg CO₂e/y)

	Cogen	Ref.
Space heating	6095	3900
 DHW (back-up heater) 	213	1187
 HVAC electricity 	158	202
SE electricity generation		2504
TOTAL	6465	7784

- SE system reduces GHG emissions by 17%
- SE system reduces NOx emissions by 3.5%

CanmetENERGY

Primary energy saving

- Primary energy input:
 - SE system: natural gas for SE and back-up burner
 - Reference system: natural gas for furnace and water heater and fuel for electric power plant
- Mature technology SE system would reduce primary energy input by
- 13% compared to a coal fired power plant (32%, HHV)
- 2.3% compared to a natural gas fired combined cycle (51%, HHV) CanmetENERGY

Conclusions

- Realistic performance mature technology SE system
 - Proven performance latest generation SE unit
 - Reasonable assumption on condensability
 - SE system optimized by applying lessons learned from prototype system
- Compare to highest benchmark: best available technology
- Still emission reduction primary energy savings (When applied in heat load following mode in Ontario)

Mature technology SE residential cogeneration has a **REAL** potential for Canada (Ontario)!

Simulation Studies (3)

- IEA Annex 54 study (2010/2011)
 - Hybrid renewable energy micro-CHP system

Conclusions

- Stirling Engine system successfully deployed in various configurations in 5 different field trials
 - Codes & standards / approvals
 - Installation, O & M
 - Performance (efficiency, emissions)
- Growing knowledge and understanding from different simulations studies
- Stirling Engine Micro-CHP has real potential for reduction of emissions and primary energy use in Canada (ON)

Questions

Leadership in ecoInnovation

Natural Resources Ressources naturelles Canada Canada