From CPI to Fully Continuous: The USACIL Journey to Better Mixture Interpretation

Creating a Quantitative Drop Model LR Tim Kalafut, USACIL timothy.s.kalafut.civ@mail.mil

Disclaimer

- The opinions or assertions contained herein are the private views of the authors and are not to be construed as official or as reflecting the views of the Department of the Army or the Department of Defense.
- The US Army has licensed the ArmedXpert software package to NicheVision, LLC. The presenter receives no compensation other than normal salary from the Army for regular duties.

Where we were... CPI

- For years we just did the ol' "Sum 'em and square 'em" statistical approach using all detected alleles (pre 2010 guidelines)
- It worked well when all alleles of persons of interest (POI) in the case were found in the data
- "At least X contributors..."
- We had RMP for "simple" mixtures

CPI = RIP

- SWGDAM Guidelines came out...
- We felt like we had the rug pulled out from under us
- But wait....
 - We also used RMP
 - We had an in-house Excel program that was pretty good using RMP for 2 person mixtures
 - Also deconvoluted 2 and 3 person mixtures
 - Based on 3 simple rules
 - Could automatically condition results on a reference

RMP

- Our existing software was easily extended to 3 person mixtures
- All combinations possible at a locus were determined
- All peak height ratios and proportions were calculated
- Only the ones that make sense needed to be considered
- A good, solid quantitative binary model for deconvolution

RMP

- How do we get RMP to work for 3 people?
- We found everything we needed in the SWGDAM guidelines to use various "flavors" of RMP stats
- We extended the RMP to three contributors including dealing with drop out situations via the 2P concept – (NicheVision involved)
- Works great when interpretable loci end up including the references in the case

RMP

- We got really good at using RMP and interpreting partial/degraded/complex mixtures
- "Turbo" RMP stats served us well for 95%+ of our casework samples
- But some samples just didn't fit...
 - Would be labeled inconclusive...
 - Then you check against POI and POI alleles present... but sample not interpretable – FRUSTRATING!

LR to the rescue?

- We didn't use LR, even though in-house software could do it
- In the LR approach, you consider POI profiles during the interpretation process
- But how to deal with missing alleles...
 - Is there a "2p" version of the LR?
 - If we find one, can we salvage some of those samples the RMP can't handle?

LR to the rescue?

- We found out there were various LR models
- Binary models
 - UC model (becomes the mUC with drop out)
 - R model (restricted –quantitative)
- Continuous LR models
 - F model
 - Q model

What we did...

- We went looking for help...
- We got in contact with John Buckleton and Jo Bright at ESR in Auckland, NZ
- In November of 2011 we sent an email...
- Dear Dr. Buckleton,
 - I'd like to ask you a question about using the LR when drop out is a concern. We have tweaked the RMP stats to handle this, but have reached the limits of that for 3 persons using PHr and P.....

How we got started

- They invited us to their lab to teach us the Q model – visited in Feb 2012
- Kelly et al paper just published out of their lab
- We had a pretty good software programmer we'd been working with....

Q model LR

Forensic Science International: Genetics 6 (2012) 191-197

Contents lists available at ScienceDirect

Forensic Science International: Genetics

journal homepage: www.elsevier.com/locate/fsig

The interpretation of low level DNA mixtures

Hannah Kelly^{a,*}, Jo-Anne Bright^a, James Curran^b, John Buckleton^a

^a ESR, PB 92021 Auckland, New Zealand

^b Department of Statistics, University of Auckland, PB 92019 Auckland, New Zealand

$$\frac{4!}{2!1!1!} \Pr(13, 13, 14, 15|X) + \frac{4!}{1!2!1!} \Pr(13, 14, 14, 15|X) + \frac{4!}{1!1!1!1!} \Pr(13, 14, 15, Q|X) = 12 \Pr(13, 14, 15|X) \times \begin{bmatrix} \Pr(13|13, 14, 15, X) \\ + \Pr(14|13, 14, 15, X) \\ + \Pr(14|13, 14, 15, X) \\ + \Pr(15|13, 14, 15, X) \\ + 2\Pr(O|13, 14, 15, X) \end{bmatrix}$$

Table 3 (Continued)

Q model

$\frac{12(\theta(1-\theta)\mathbf{p}_{28})(\theta+(1-\theta)\mathbf{p}_{30})}{(1+\theta)(1+2\theta)}$	
Allelic vector (28,30) Pr(E Hp)=1	
$\begin{array}{r} 4Pr(28,28,30 28,30)+6Pr(28,28,30,30 28,30)+4Pr(28,30,30,30 28,30)+12Pr(28,28,30,30,20 28,30)\\ +12Pr(28,30,30,0,2 28,30)\\ +12Pr(28,30,0,0,2 28,30)\end{array}$	28,30,Q 28,30)
$Pr(E Hd) = 2Pr(28,30 28,30) \times \begin{bmatrix} 6 - 6Pr(28 28,28,30,30) - 6Pr(30 28,28,30,30) + 2Pr(28,28,30,30) \\ + 2Pr(30,30 28,28,30,30) \\ + 3Pr(28,30 28,28,30,30) \end{bmatrix}$,28 28,28,30,30)
$\frac{2(\theta(1-\theta)p_{28})(\theta+(1-\theta)p_{30})}{(1+\theta)(1+2\theta)}\times$	
$\begin{bmatrix} 6 - \frac{6(2\theta + (1-\theta)p_{28})}{(1+3\theta)} - \frac{6(2\theta + (1-\theta)p_{30})}{(1+3\theta)} + \frac{2(2\theta + (1-\theta)p_{28})(3\theta + (1-\theta)p_{28})}{(1+3\theta)(1+4\theta)} + \frac{3(2\theta + (1-\theta)p_{28})(2\theta + (1-\theta)p_{30})}{(1+3\theta)(1+4\theta)} + \frac{3(2\theta + (1-\theta)p_{28})(2\theta + (1-\theta)p_{30})}{(1+2\theta)(1+4\theta)} + \frac{3(2\theta + (1-\theta)p_{30})(2\theta + (1-\theta)p_{30})}{(1+2\theta)(1+2\theta)(1+2\theta)(1+2\theta)} + \frac{3(2\theta + (1-\theta)p_{30})(2\theta + (1-\theta)p_{30})}{(1+2\theta)(1+2\theta)(1+2\theta)(1+2\theta)(1+2\theta)}} + \frac{3(2\theta + (1-\theta)p_{30})(2\theta + (1-\theta)p_{30})}{(1+2\theta)(1+2\theta)(1+2\theta)(1+2\theta)(1+2\theta)(1+2\theta)}}$	$\frac{(1-\theta)p_{30})(3\theta(1-\theta)p_{30})}{(1+3\theta)(1+4\theta)}$

What happened next – Part 1

- We showed them our software with 2 and 3 person deconvolution and "turbo" RMP stats
- While there we started discussing a "hybrid" LR model that is both continuous and quantitative
- We call it D model
 - It's based on the way we've always deconvoluted profiles
 - Adds an allele specific probability of Drop out based on each questioned sample amp

What happened next – Part 2

- While there, they showed us a piece of software they were developing – STRmix (DyNAmix originally)
 - Fully continuous
 - MCMC based
 - Really impressive
 - HUGE jump from RMP world
- We left with intentions of working on D model for us and an interest in STRmix

Where we are today

- STRmix was pretty much a complete product
- D model had to be developed, coded, tested, broken, re-tested, etc....
- Today at USACIL we are finishing our internal competency testing on STRmix
- We are supporting, testing, developing the ArmedXpert D Model with NicheVision and anticipate it being another tool available to use when it's fully finished

D Model Strategy

- Step 1: Validate
 - Run a bunch of samples with varying levels of drop out for which you know the true types
 - Develop a logistic regression curve that relates probability of drop out – Pr(D) – to allele height
- Step 2: Solve degradation curve of Q sample
 Contributor specific
 - Results in allele specific probability of drop out
 - Apply quantitative information (deconvolute)
 - Build the LR

Logistic Regression in Football

Logistic Regression in Allelic Drop Out

Forensic Science International: Genetics 9 (2014) 9-11

Contents lists available at ScienceDirect

Forensic Science International: Genetics

journal homepage: www.elsevier.com/locate/fsig

Utilising allelic dropout probabilities estimated by logistic regression in casework

John Buckleton^{a,*}, Hannah Kelly^b, Jo-Anne Bright^{a,b}, Duncan Taylor^c, Torben Tvedebrink^{d,e}, James M. Curran^b

^aESR Ltd, Private Bag 92021, Auckland, New Zealand

^b Department of Statistics, University of Auckland, Private Bag 92019, Auckland, New Zealand

^c Forensic Science South Australia, 21 Divett Place, SA 5000, Australia

^d Department of Mathematical Sciences, Aalborg University, Fredrik Bajers Vej 7G, DK-9220 Aalborg East, Denmark

^eSection of Forensic Genetics, Department of Forensic Medicine, Faculty of Health Sciences, University of Copenhagen, Denmark

Results of 140 samples (75 rfu threshold)

QAT

- Q: What determines the Pr(D)?
- A: The amount of template available for the enzyme to amp
- Note this is not part of the quant step, and the true value both varies across the profile (degradation) and can never be known
- But we can make a proxy by plotting a curve based on the observed rfu height
- Results in "Quality Amplifiable Template"

Degradation Curve

Australian Journal of Forensic Sciences, 2013 http://dx.doi.org/10.1080/00450618.2013.772235

Degradation of forensic DNA profiles

Jo-Anne Bright^{a,b*}, Duncan Taylor^c, James M. Curran^b and John S. Buckleton^a

^aESR, Private Bag 92021, Auckland 1025, New Zealand; ^bDepartment of Statistics, University of Auckland, Private Bag 92019, Auckland 1025, New Zealand; ^cForensic Science South Australia, 21 Divett Place, SA 5000, Australia

Degradation curve

 Empirical data has shown that for larger multiplexes a DNA slope is best described by an *exponential curve*

QAT related to RFU $E = \alpha_0 e^{-\alpha_1 \times mwt}$

- The "mwt" term in the equation corrects for allele size (bp)
- The α values are solved by the software
- Detected peaks:
 - QAT could be higher or lower than the rfu value
 - It's possible for all peaks to have the same QAT value across the profile

QAT related to RFU

- Dropped peaks:
 - New term to get used to: EXPECTED PEAK HEIGHT or how tall should that peak have been
 - In other words, if we know the bp size of the allele that dropped, we can determine how tall (in QAT) it should have been
- (RFU is *observed* peak height, while QAT is *expected* peak height)

Degradation curve

• Once you have the curve, you can now determine E (Expected height in QATs) for any allele

Relating back to the Pr(D) curve

- The logistic regression curve has an *E* in it
 - Expected peak height from the degradation curve of the particular sample in question
 - This *E* and the values for β from validation give
 Pr(D)
- Remember, the E comes from the degradation curve

 $= \alpha_0 e$ $\Pr(D) = \frac{\beta_0 e^{\beta_1 E}}{1 + \beta_1 e^{\beta_1 E}}$ Allele height based X-axis from egram on curve (QAT) (bp) 26

Locus example – one drop

D13S317 POI = 13,14

$$f_{11} = 0.1, f_{12} = 0.1, f_{14} = 0.1, f_Q = 0.7$$

EQ

105

β ₀	β1	E ₁₃	E ₁₄
11,094,274	-8.61	104	103

Pr(D ₁₃)	Pr(D ₁₄)	Pr(D _{14,14})	Pr(D _Q)
0.242	0.251	0.025	0.238

Deconvolute

- This is the ArmedXpert deconvolution window
- It's set for 2 people
 - Limited to 50% phr
 - Conditioned on V

Mixture Interpretation - DDA Interpretation	_ = ×
Setup	
Pick via mouse Vaginal swab	Contributor # 2 *
	References
Locus D13S317 (3) Conversion of the second	► PHr 0.50 \$
Alleles 11, 12, 14	mPH 75 ♀ HT 300 ♀ ^s mP 0.00 ♀
RFUs 1591, 1622, 134 Delow with H BPs 228, 232, 240 Initial Lock locus	Popout View call report -
on report	calls Add Comment V
11 12 14	
Globally Apply Stutter	
0.058	
Mixture Information	12 🛟
Only combinations including the following reference profiles are included: (11, 12 All combinations have: PHr >= 0.5, MPh >= 75, mP >= 0	:)
For a 2-contributor 3-allele mixture of types AB & AC: 2/3-combination(s): 11, 12(phr = 0.91; p = 0.92) [Ref. 1] •11, 14(phr = 0.91; p = 0.08) [11.5 : 1]	
11, 12(phr = 0.94; p = 0.92) [Ref. 1] $12, 14(phr = 0.94; p = 0.08)$ [11.5 : 1]	
For a 2-contributor 3-allele mixture of types AB & CC: 1/3-combination(s):	
11, 12(phr = 0.98; p = 0.96) [Ref. 1] 14(p = 0.04) [24 : 1]	
·	•

Deconvolute

- Although there are really 6 different ways two people can make a three allele pattern, only 3 fit our constraints
 - In this case, that's true even without conditioning on a V profile
- The "Q" or drop allele isn't shown - yet

Mixture Interpretation - DDA Interpretation	X
Setup Pick via mouse Vaginal swab	Operations Contributor # 2 References
Locus D13S317 (3)	Highest to lowest# PHr 0.50 ↓ mPH 75 ↓ HT gnore alleles mP 0.00 ↓ below mPH mP 0.00 ↓
BPs 228, 232, 240	on report Calls Add Comment Very Call Comment
100 ÷ % 11 12 14 Apply Globally Apply Stutter Add Profile 1 0.058 0.058 0.058 0.058 0.058	
Mixture information Only combinations including the following reference profiles are in All combinations have: PHr >= 0.5, MPb >= 75, mP >= 0	12 ‡
For a 2-contributor 3-allele mixture of types AB & AQ: 2/3-combination	ation(s):
11, 12(phr = 0.91; p = 0.92) [Ref. 1] 11 14(phr = 0.91; p = 0.08 11, 12(phr = 0.94; p = 0.92) [Ref. 1] 12, 14(phr = 0.94; p = 0.08	
For a 2-contributor 3-allele mixture of types AB & CC: 1/3-combina 11, 12(phr = 0.98; p = 0.96) [Ref. 1] • 14(p = 0.04) [24 - 1]	ation(s):
۲. (III)	•

Make a list of genotypes you care about

- These are the only genotypes the minor foreign contributor could be based on the settings we told AX to use
- Note p = 0.08 or 0.04, minor proportion is 8% or 4% (not counting potential drop or 14,Q)

1] • 11, 14(phr = 0.91; p = 0.08) 1] • 12, 14(phr = 0.94; p = 0.08)

of types AB & CC: 1/3-combinatic 1] • 14(p = 0.04) [24 : 1]

Remember the LR

- 2 competing propositions
 - $H_1 \text{ or } H_p = What prosecution thinks the evidence explains$
 - $-H_2$ or H_d = What defense thinks
- LR>1 in favor of prosecutor/numerator
- LR<1 in favor of defense/denominator

$$LR = \frac{\Pr(E \mid H_1, I)}{\Pr(E \mid H_2, I)}$$

What we've done so far

- We've determined a degradation curve for this sample
- That degradation curve gave us our expected peak heights for both detected and any dropped alleles
- We've then compared that *Expected* height to the *Beta* curve (log regression) to determine *Pr(D)* or *Pr(N)*
- Now build the LR I'll start with defense

D13S317 H₂ - Defense

List of Genotypes		
14,14		
11,14		
12,14		
14,Q		

Make a list of Genotypes you care about.....

D13S317 H_2 - Defense

f ₁₁	f ₁₂	f ₁₃	f _Q
0.10	0.10	0.10	0.70

List of Genotypes	Genotype Frequency		
14,14	0.01		
11,14	0.02		
12,14	0.02		
14,Q	0.14		

.....and calculate those genotype frequencies

D13S317 H₂ - Defense

Pr(D ₁₄)	Pr(D _{14,14})	Pr(D _Q)
0.251	0.025	0.238

List of	Genotype	Drop or Not	, 0	
Genotypes	Frequency	Drop	based on Pr(D)	
14,14	0.01	$\overline{D}_{14,14}$	1-0.025	
11,14	0.02	$\overline{D}_{\!14}$	1-0.251	
12,14	0.02	$\overline{D}_{\!14}$	1-0.251	
14,Q	0.14	$\overline{D}_{\!14} D_Q$	(1-0.251) x 0.238	

Modify genotype freqs by Pr(D) and/or Pr(N) as needed

D13S317 H₂ - Defense

1			
	Pr(D ₁₄)	Pr(D _{14,14})	Pr(D _Q)
	0.251	0.025	0.238

List of	Genotype	Drop or Not	Modifying value	Multiply
Genotypes	Frequency	Drop	based on Pr(D)	Across
14,14	0.01	$\overline{D}_{\!14,14}$	1-0.025	0.00975
11,14	0.02	$\overline{D}_{\!14}$	1-0.251	0.0150
12,14	0.02	$\overline{D}_{\!14}$	1-0.251	0.0150
14,Q	0.14	$\overline{D}_{\!14} D_Q$	(1-0.251) x 0.238	0.0250

Multiply across the rows.... (2pq x Pr(D))

D13S317 H₂ - Defense

Pr(D ₁₄)	Pr(D _{14,14})	Pr(D _Q)
0.251	0.025	0.238

List of	Genotype	Drop or Not		Multiply
Genotypes	Frequency	Drop	based on Pr(D)	Across
14,14	0.01	$\overline{D}_{14,14}$	1-0.025	0.00975
11,14	0.02	\overline{D}_{14}	1-0.251	0.0150
12,14	0.02	\overline{D}_{14}	1-0.251	0.0150
14,Q	0.14	$\overline{D}_{\!14} D_Q$	(1-0.251) x 0.238	0.0250
			Add Down:	0.06475

.....Add down to get the H₂ value for the locus

D13S317 LR H_1 = Prosecution Pr(D₁₃) Pr(D₁₄) 0.242 0.251

List of Genotypes	, .	-	Modifying value based on Pr(D)	Multiply Across
13,14	1		0.242 x (1-0.251)	0.181

-Note this significant difference from H_2 : The genotype probability is 1. This is because the prosecution is 100% certain the POI is the suspect in the case. (Otherwise, why are we at court in the first place?)

-However, because the 13 allele has dropped, the H_1 is penalized By the probability of drop, and the overall H_1 value is no longer 1.

-The magic in a probabilistic LR happens in the numerator !!!

LR for D13

- Take H₂ from 2 slides prior
- Divide by H₁ from previous slide

$$LR = \frac{0.181}{0.06475} = 2.795$$

 FYI – 14, Any (2p) for this locus is 14, so an LR of ~3 is a significant penalty to H_p compared to the RMP

D Model Summary

- Step 1: Validate your Pr(D) using logistic regression to generate your beta curve (one time)
- Step 2: Use it on a sample
 - 2A: Hang a degradation curve (alpha) on a sample to convert to QAT and find Pr(D) from beta curve
 - 2B: Deconvolute to eliminate silly combinations
 - 2C: Use that (partial) deconvolution to make a list of genotypes you care about and find those frequencies
 - 2D: Modify by Pr(D) or 1-Pr(D) as needed per allele
 - 2E: Multiply across and add down

 A summary page gives the locus by locus LR, total LR, info about set up and average mwt for each locus (used for Q allele)

Sample Type	Sample Name	D8S1179	D21S11	D7S820	CSF1PO	D3S1358	TH01	D135317	D165539	
Mixture	Case 1 Q2	13,13	28,28	10,10	10,10	14,18	6,9.3	9,11	11,11	Ē
Hp Profile 1	Case 1 Known	13,14	28,30	-	-		-	9,11		Ē
Hp Prome 1	Case 1 Known	15,14	26,50	10,11	10,11	14,18	6,9.3	9,11	11,11	-
FBI Hispanic	LR = 243647601704.0	3.255587176	8.162897975	3.451967172	3.558692136	75.61665381	8.91657227	11.29218761	9.609442191	
FBI Black	LR = 4.50834875948e+13	3.512822358	3.614927766	3.488889003	3.525532985	75.15722892	43.57070654	75.4892458	10.92415947	Ē
FBI Caucasian	LR = 138518493939.0	3.280479898	4.156136365	3.440974576	3.558424862	21.90192842	7.22505348	20.49528916	12.65043335	Ē
Sample Type	Sample Name									
Mixture	Case 1 Q2									
Hp Profile 1	Case 1 Known									
No. of HP Contributors	1									
No. of HD Contributors	1									
Min PHR	0									
Min RFU	50									
Alpha Calc. PHR Ratio Filter	1									
Colors Blue, Green, Yellow, Red										Ī
Average Allele N	146.22	212.36	273.21	323.33	125.73	180.39	230.53	275.33		
K ← ▶ ▶ Cover / Probablity of Drop_	Hp Profile 1 / FBI_Hispanic_D8S1179	FBI_Hispanic_D	21511 FBI_Hispar	nic_D7S820 / FBI_I	Hispani I 4				•	
Ready								130%	∍0)

 A rather busy looking page summarizes observed and expected peak heights for detected alleles and Q alleles, Pr(D) for homs and hets and off this screen shot are the alpha values for this sample

					J																	
	Α	В	С	D	E I	F	G	Н	I.	J	К	L	М	N	0	Р	Q	R	S	Т	U	
1	Profile	Marker	Allele1	Allele2	01 C	02	mwt1	mwt2	mwt1(dropped)	mwt2(dropped)	mwtQ	E1	E2	E1(dropped)	E2(dropped)	Eq	Eqq	Pr(Da1)	Pr(Da2)	Pr(Daa1)	Pr(Daa2)	
2		D8S1179	13	Q	82 (0	146.9			151.1	146.223333	49.1720419	0	0	31.3592177	24.614811	49.229622	0.83973338	NA	0.28178539	NA	0.
3		D21S11	28	Q	92 (0	201.9			210.02	212.362917	44.8933464	0	0	31.3592177	22.0610767	44.1221533	0.8804452	NA	0.35543909	NA	0.
4		D7S820	10	Q	83 (0	273			276.98	273.212	39.9059164	0	0	31.3592177	19.9462844	39.8925688	0.91960621	NA	0.46136228	NA	0.
5		CSF1PO	10	Q	116	0	320.9			325.03	323.332	36.8613826	0	0	31.3592177	18.3575207	36.7150414	0.93898948	NA	0.53541305	NA	C
6		D3S1358	14	18	124 1	38	121	137			125.7275	184.222764	178.298999	0	0	182.441804	364.883607	0.03617066	0.04068139	0.00280223	0.00316535	0.
7		TH01	6	9.3	229 20	01	172	187			180.385	166.039535	161.04465	0	0	163.213438	326.426876	0.05244692	0.05842182	0.00412749	0.00462457	0.
8		D13S317	9	11	217 1	97	209	217			230.52875	153.978466	151.488789	0	0	147.36076	294.721521	0.06836432	0.07235018	0.00546474	0.00580621	0.
9		D16S539	11		212		276.1				275.326667	268.613856	268.613856	0	0	134.505028	269.010056	0.00907733	0.00907733	0.00068547	0.00068547	0.
					-		- 1	1				-	-									-

- Each locus gets it's own summary page for each population group
- This is single source example
- Only a 13 was detected, but
 POI is 13,14

1	locus	D8S1179				Hp Profile	1			
2	Mixture	13,13			Allele	13	Q	QQ		
3	Hp Profile 1	13,14			Var	а				
4	4	1			PrDrop	0.281785	0.028101	0.971899		
5					PrNotD	0.718215	0.971899	0.028101		
6	Hp Calculations				Freq	0.3251	0.3498	0		
7	Mixture	a,a								
8	Hp Profile 1	a,b								
9										
10	HH = Mixture+Hy Profile 1									
11	Hp Profile 1	Equation	Number S	ubs						
12	Na,Db	(P(Na)*P((0.7182146	506848*0.9	718987970	64)				
13										
14	Hp = [((Na)*P(Db))]									
15	Hp = ((0.718214606848*0.97189	8797064)]								
16	Hy = 0.698031912429									
17										
18	Hd Calculations					1				
19	Mixture	a,a								
20										
21	Hd = Mixture+Hd UnKnown 1									
22		Hd UnKno	Equation	Number S	ubs					
23		Na,Na	((F(a)^2+F	(((0.3251)	^2+(0.3251)*(1-0.3251)*0.01)*(0	.718214606	848)^2)	
24		Dq,Na	(2*F(q)*F((2*0.3498	*0.3251*0.	9718987970	64*0.7182	14606848)		
25										
26										
27	Hd = [((F(a)^2+F(a)*(1-F(a))*T)	*P(Na)^2)+	(2*F(q)*F(a	a)*P(Dq)*F	P(Na))]					
28	Hd = [(((0.3251)^2+(0.3251)*(1-	0.3251)*0.0	1)*(0.7182	14606848)	^2)+(2*0.3	498*0.3251	*0.9718987	97064*0.71	18214606848	()]
	Hd = 0.214410450315									
30										
31	LR = Hp/Hd = 3.25558717593									
32										
H I	🕨 🕨 🗌 Cover 🖌 Probablity of D	rop_Hp Prof	ile 1 🔰 FB	I_Hispanic	_D8S1179	FBI_Hisp	panic_D21S	11 🗍 🖣 🔛		
Rea	dy									

- Calculated values use in the stat
 are at the top
- Prosecution
 setup (Pr(N) for 13 x Pr(D) for 14)
- Defense setup

 (13,13 and 13,Q)

LR

~	D	C	U	L		U		
locus	D8S1179				Hp Profile	1		
Mixture	13,13			Allele	13	Q	QQ	
Hp Profile 1	13,14			Var	а			
				PrDrop	0.281785	0.028101	0.971899	
				PrNotD	0.718215	0.971899	0.028101	
Hp Calculations				Freq	0.3251	0.3498		
Mixture	a,a							
Hp Profile 1	a,b							
) Hp = Mixture+Hp Profile 1								
L Hp Profile 1	Equation	Number S	ubs					
2 Na,Db	(P(Na)*P(Db))	(0.718214	506848*0.9	718987970	064)			
3		-				- ப		
1 Hp = [(P(Na)*P(Db))]							р	
<mark>нр = [(0.718214606848*0.9718</mark>	98797064)]						۲	
5 Hp = 0.698031912429								
7								
3 Hd Calculations								
Mixture	a,a							
)								
L Hd = Mixture+Hd UnKnown 1								
2	Hd UnKnown 1							
3	Na,Na				L)*(1-0.3251			848)^2)
1	Dq,Na	(2*F(q)*F	(2*0.3498	*0.3251*0.	9718987970	64*0.7182	14606848)	
5						$\mathbf{\succ}$	Ц	
5							П	
7 Hd = [((F(a)^2+F(a)*(1-F(a))*T)							м	
3 Hd = [(((0.3251)^2+(0.3251)*(1-	-0.3251)*0.01)*(0	.718214606	848)^2)+(2	2*0.3498*0	.3251*0.971	L8 <mark>9879706</mark> 4	*0.7182146	606848)]
Hd = 0.214410450315								
)								
L LR = Hp/Hd = 3.25558717593								
2								

D Model Summary

- It is probabilistic deals with "maybe"
 - Allele specific probability of drop per contributor per sample
- It is quantitative
 - Only considers genotype combinations that make sense
 - Can be more restrictive at high RFU and less at low
- It is fully continuous
 - Well, almost (semi-continuous isn't quantitative)
 - At some level peaks are so low you have consider all options so some thresholds on combinations

Impact of probabilistic on casework

- D model isn't in use yet although trials against STRmix look good; for now we use STRmix
- So the impact of STRmix.....
- We can use more samples
- We still interpret for inclusion/exclusion we are the experts, not the software
- Early discussions with lawyers show they like the "X times more likely"

Unexpected side effects

- We (almost) always stated # of contributors for every sample, but now we must (no more "additional genetic data at 2 loci" and doing a Single Source stat)
- We still need to interpret first, STRmix only gives weight to what the expert interprets
- The maths have been adopted quite readily
- Determining which propositions to include in the LR is challenging

Unexpected side effects

- We expected that our existing ArmedXpert software may be diminished somewhat, but that absolutely is not the case
- Determining # of contributors and whether or not a trace level contributor in a 4 person mixture could be Suspect X requires a thorough knowledge and training in "old school" mixture interpretation
- The term "complex mixtures" is somewhat outdated as they are either interpretable or not

Unexpected side effects

- We decided we needed to really investigate our low level data and analytical thresholds (AT) from the instruments
- Resulted in normalizing our four 3130s each one has a slightly different injection set up, but all give similar rfu and this is monitored
- We are about to go on-line with OSIRIS as our analysis software, AT is now color specific from 24-53 rfu

Thank you!

- Please feel free to contact with questions
- timothy.s.kalafut.civ@mail.mil
- 404-469-7289