

Asia-Pacific Economic Cooperation APEC Regional Workshop on Measurement Challenges in Renewable Energy and Climate Science, Oct. 29, 2015, Beijing

Impact of LED lighting on Worldwide Energy Saving and Role of Optical Metrology

Yoshi Ohno

NIST Fellow, Sensor Science Division

(President of CIE)

National Institute of Standards and Technology

Gaithersburg, Maryland USA

LED Lighting (Solid State Lighting) – the Third Revolution in Lighting –

Huge Energy Savings Potential

Lighting consumes 22 % of electricity 8 % of total energy (statistics of USA)

> Solid State Lighting, by 2027 50% reduction of energy consumed by lighting Customer savings of \$30 billion annually in USA Reduction of greenhouse gas emissions (U.S. Dep. Energy)

White LED Im/W improvements

Source: DOE 2014 SSL Roadmap

http://www.energy.gov/sites/prod/files/2015/02/f19/craford_innovation_sanfrancisco2015.pdf

Energy Savings Forecast for SSL

http://www.energy.gov/sites/prod/files/2015/02/f19/brodrick_welcome_sanfrancisco2015.pdf

From 2015 U.S. Department of Energy SSL R&D Workshop

U.S. Deployment and Cost for A-Type LED Lights 2008–2013

http://www.energy.gov/sites/prod/files/2015/02/f19/carr_keynote_sanfrancisco_2015.pdf

Global LED penetration in lighting

http://www.statista.com/statistics/246030/estimated-led-penetration-of-the-global-lightingmarket/

Problems

Many different SSL products of various qualities are spreading to the market

- Some very **low quality** products in the market (dim, short life, bad color).
- Inaccurate performance claims
- Insufficient information on product labels

- 5 star:
 (1)

 4 star:
 (0)

 3 star:
 (1)

 2 star:
 (0)

 1 star:
 (3)
- Disappoint customers.
- Delays adoption of LED products.

Big concerns worldwide

- Many new manufactures, some have little knowledge on lighting.
- Standards and measurement proecdures for traditional lamps often do not apply.

Quality Assurance of SSL products (USA)

IESNA LM-79-08 Approved Method for Electrical and Photometric Measurement of SSL Products

- Used by Energy Star, Lighting Facts, and many other government programs.
- Used in accreditation (NVLAP SSL Testing)
- Covers <u>LED luminaires</u> and <u>LED</u> <u>lamps</u>.
- Covers measurements of
 - Total luminous flux (lumen)
 - Luminous efficacy (Im/W)
 - Chromaticity, CCT, CRI
 - Luminous intensity distribution

Needs for International Harmonization in SSL Testing and Accreditation

CIE S025 Test Method for LED lamps, LED modules, and LED luminaires

Commiss Internation	inal Commission Internatio	ion on Illumina nale de l'Eclairø tungskommissie	tion ge on		CI	E S 02	5/E:201	15
Intern	ational	Standard						
	Test Method for LED Lamps, LED Luminaires and LED Modules							
Test LED	t Meth) Lum	iod for	LEC and) Lam	os, Mod	lule	s	
Test LED Méthode Testmeth	t Meth Lum d'essai pour la ode für LED-L	iod for inaires ampes a LED, IU ampen, LED-Le	LED and minaires a suchten un	D Lam	DS, MOC les a LEI	lule	S	
Test LED Methode Testmeth	t Meth) Lum d'essal pour li ode für LED-L	ind for inaires ampes a LED, It ampen, LED-Le	LEC and uminaires a suchten un	D Lamj I LED a LED et modu d LED-Module	DS, MOC	lule	5	
Test LED Méthode Testmeth	t Meth) Lum d'essal pour la ode für LED-L	od for inaires ampes a LED, Iu ampen, LED-Le	LED and minaires a suchten un	D Lamp I LED a LED et modu d LED-Module	DS, MOC les a LE	lule	5	
Tesi LED Methode Testmeth	t Meth) Lum d'essal pour la ode für LED-L	ampes a LED, IL ampen, LED-Le	LEC and uminaires a suchten un	D Lam	DS, MOC les a LEC	iule:	S	
CIE Interr or partly,	t Meth) Lum d'essal pour la ode für LED-L national Stank without the ep	ampes a LED, IL ampen, LED-Le	LEC and uminalres a suchten un suchten un ghted and t of the Ci	shall not be re	DS, MOC les à LEI	d In any f	S Iorm, entir	ely
CIE Intern or partly,	t Meth) Lum d'essal pour la ode für LED-U national Stanc without the ev ral Bureau, VI rgerstrasse 9.	ampes a LED, It ampen, LED-Le lards are copyri pilicit agreemen A-1010 Vienna.	LEC and minaires a suchen un ghted and t of the Ci Austria	shall not be re	DS, MOC les a LEC	d In any f	S form, entir	ely D15

Published in March 2015. This standard took 4 years to develop.

International Standard CIE S 025 provides a unified global test method for harmonisation of testing of LED lighting products worldwide.

Collaboration of CIE TC2-71 (Y. Ohno, chair) and CEN TC169 WG7 (G. Vandermeersch, chair)

European standard published: EN 13032 Lighting Applications — Measurement and presentation of photometric data of lamps and luminaires — Part 4: LED lamps, modules and luminaires

Measurement challenges

- LEDs operated in lamps and luminaires are very hot (*T_j* can be >100° C)
- LED performance is a function of T_j but very difficult to measure or reproduce T_j.
- NIST developed a method to measure LEDs at any given *T_j* using steady DC current. It is adopted in IES standard LM-85-14.

IEA – International Energy Agency
 4E – Efficient Electrical End-Use Equipment

Interlaboratory Comparison (IC 2013)

- Total 110 laboratories' measurements of solid state lighting products were compared, including data linked from
 - 35 labs in NVLAP and NIST MAP
 - Data of 19 labs from APLAC SSL PT program

Comparison quantities

- Luminous flux (Im)
- luminous efficacy (lm/W)
- Electrical power, current
- Power factor
- Chromaticity, CCT, CRI

Y. Ohno, et al, http://ssl.iea-4e.org/files/otherfiles/0000/0067/IC2013_Final_Report_final_10.09.2014a.pdf

IC 2013 Final Report to be published in Sep. 2014

An example data (luminous flux of omni-directional LED lamp)

APEC Workshop Beijing 2015

NIST 17

Difficulty in measurement of lifetime

Luminaire V2.0 (EPA) May 4, 2015. Lifetime L_{70} >25,000 h indoor, 35,000 h outdoor

- **Test method** (standard) is needed for regulations.
- Testing products for 35,000 h would take 4 years. Lifetime needs to be **predicted from testing at much shorter time.**
- **Electronics** often fail before LEDs fail. (Lifetime of LEDs is not necessarily the lifetime of LED lamps and luminaires)
- Test procedures should not be too much burden to the industry. (lead to increase of cost, delay of commercialization)

Two approaches to measure (predict) lifetime

Components approach

IES LM-80-08/TM-21-11

Aging test data of components (LEDs, modules)

Direct approach IES LM-84-14/TM-28-14

Aging test directly on LED lamps, LED luminaires for changes of luminous flux, color.

High cost Test includes electronics

Color Quality Issues

Current standard: **Color Rendering Index** (**CRI**), CIE Pub. 13.3

General Trade-off between color rendering and energy efficiency.

CRI is old (1974 formula) and known to have significant inaccuracies.

 \rightarrow Accurate color rendering metric is important for best use of energy.

IES published TM-30 Evaluating Light Source Color Rendition

CIE position statement on CRI and color quality metrics http://www.cie.co.at/index.php?i_ca_id=981

Research on color quality metrics is actively done in many places including NIST.

W. Thank you for your attention Contact: ohno@nist.gov

