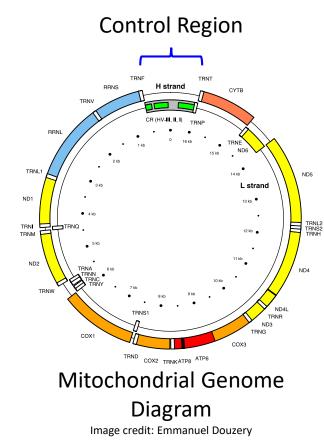
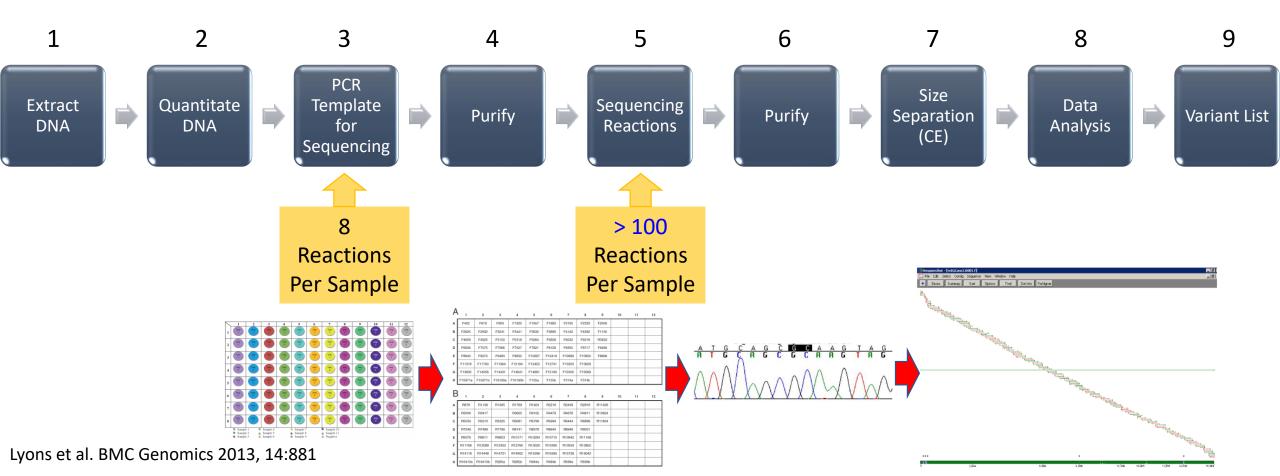


Research Biologist - NIST Applied Genetics Group Forensics @NIST November 7, 2018

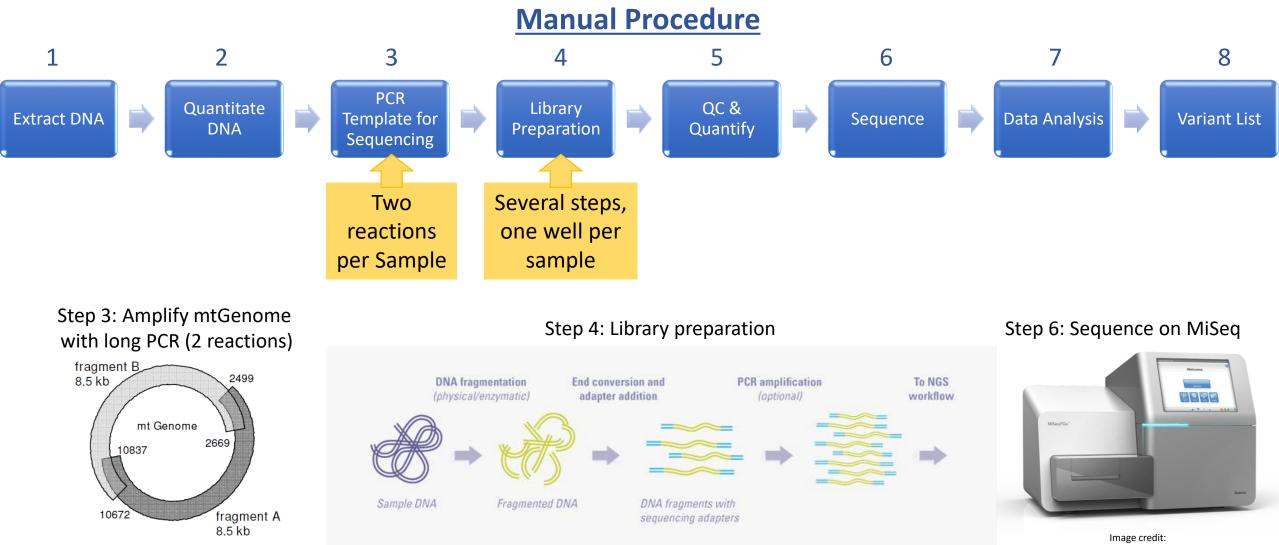
Outline


- Sanger sequencing and the "next generation"
- Reference materials and mtDNA sequencing
- Population sequencing project

NIST Disclaimer

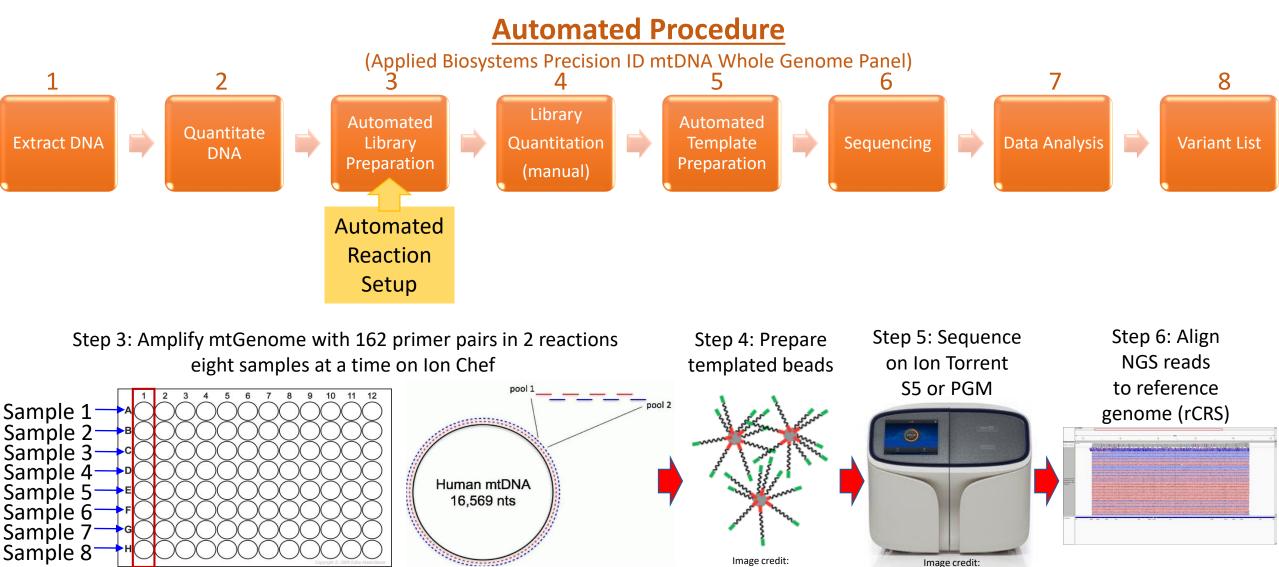

- **Disclaimer** Points of view in this document are those of the authors and do not necessarily represent the official position or policies of the U.S. Department of Commerce or the Department of Justice. Certain commercial equipment, instruments, and materials are identified in order to specify experimental procedures as completely as possible. In no case does such identification imply a recommendation or endorsement by NIST, nor does it imply that any of the materials, instruments, or equipment identified are necessarily the best available for the purpose.
- All work presented has been reviewed and approved by the NIST Human Subjects Protections Office.

Mitochondrial DNA Sequencing - Introduction


- Mitochondrial DNA advantages
 - High copy number
 - Very small quantity of evidence required
 - Single nucleotide variants (SNPs or SNVs) = profile
 - Small region of DNA analyzed
 - Short PCR amplicons
 - Applicable to challenging/degraded/limited samples
 - Mass disaster, missing persons
 - Example: World Trade Center victim identification 44,000 mtDNA profiles
- Disadvantage
 - Low power of discrimination using "Control Region"
 - 26,127 CR genotypes in EMPOP database for matching
 - Can be improved with whole mtGenome analysis

Sanger Sequencing Workflow - mtGenome

Next Generation Sequencing Workflow



Fendt et al. BMC Genomics 2009, 10:139

Image credit - www.thermofisher.com

www.Illumina.com

Next Generation Sequencing Workflow



www.wright.edu/~oleg.paliy/NGS.html

www.thermofisher.com

Sequencing Instruments at NIST

- Multiple platforms
- Orthogonal measurements
- Characterize Standard Reference Materials

Ion Chef

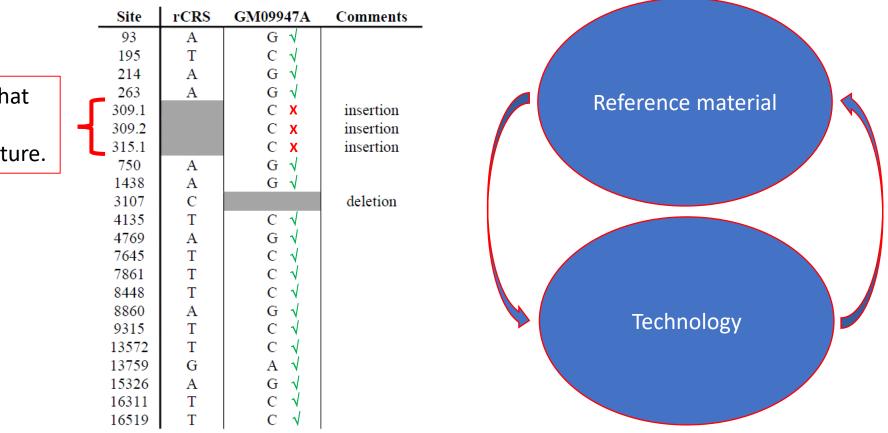
Applied Biosystems SOLiD Illumina MiSeq FGx

Ion Torrent PGM lon Torrent S5

NIST Mitochondrial Sequencing SRMs

• SRM 2392

- Three components
 - Component A: DNA from cell line CHR
 - Component B: DNA from cell line 9947A


- Component C: Cloned fragment from HV1 region of CHR containing C-stretch
- SRM 2392-I
 - One component
 - DNA from cell line HL60
- Characterized with Sanger methods
 - Released in 2001

Sanger-Based Sequence Agrees With NGS Values

Table 2. Certified Human mtDNA Sequence Differences from the Revised Cambridge Reference Sequence for SRM 2392 Component GM09947A

Previously no software available that correctly handled these C-stretch insertions with forensic nomenclature.

NGS Can Detect Low Level Heteroplasmy

• Level is below what we can reliably see with Sanger methods

► HUMMTCG - HUMMTCG:1,302-1,461 Go	► HUMMTCG - HUMMTCG: 2,419-2,496 Go
■ ■ 1.320 bp 1.340 bp 1.360 bp 1.380 bp 1.380 bp 1.460 bp	
	- -
5500_12_07_10_FC1 □ □ ×	^{₽-2273} 5500_12_07_10_FC □ □ ×
HUMMTCG:1,393	HUMMTCG:2,445 Total count: 20816
Total count: 24226 A : 4095 (17%, 1877+, 2218-)	A : 9 (0%, 3+, 6-) C : 1495 (7%, 512+, 983-)
C:5(0%, 1+, 4-)	G : 3 (0%, 1+, 2-) T : 19084 (92%, 6915+, 12169-)
G : 19979 (82%, 8852+, 11127-) T : 0	N : 225 (1%, 24+, 201-)
N : 147 (1%, 35+, 112-)	SRM 2392-I (HL-60)
SRM 2392 Component A (CHR)	Position 2,445 Y (7 % C)
Position 1,393 R (17 % A)	C C T G T C A A C C C A A C A C A G G C A T G C T C A T A A G G A A

Multiple Orthogonal Measurements

• Great approach for certifying reference materials!

		SRM 2392			
	Component				
	A	Compor	nent B	SRM 2392-I	
Nucleotide	64 T	1393 A	7861 C	2445	5149
PGM Edge	26.8	21.2	72.7	10.6	5.1
PGM NIST 1	24.3	15.6	45.0	7.5	9.1
PGM NIST 2	25.0	17.5	65.7	7.7	7.7
PGM NIST 3	29.7	16.5	59.4	7.7	7.7
PGM NIST HiQ	33.2	15.2	77.7	7.7	8.4
MiSeq Edge	33.0	19.0	87.4	10.7	6.8
MiSeq NIST	31.6	17.9	88.4	9.1	6.4
HiSeq BC	30.6	16.9	88.3	7.4	7.1
SOLiD NIST	29.0	16.7	87.3	7.3	7.0
Average	29.2	17.4	74.6	8.4	7.3
St. Dev.	3.1	1.7	14.5	1.3	1.1

Multiple Orthogonal Measurements

• Great approach for characterizing reference materials!

				7,860 bp	7,870 bp	
		SRM 2392		С		
	Component A	Compoi	nent B	C C C	🛃 IonXpress_003_R 💶 💷 💌	
Nucleotide	64 T	1393 A	7861 C	С		
PGM Edge	26.8	21.2	<mark>72.7</mark>	C C	HUMMTCG:7,861	
PGM NIST 1	24.3	15.6	<mark>45.0</mark>		Total count: 4115	
PGM NIST 2	25.0	17.5	<mark>65.7</mark>	C	A : 5 (0%, 5+, 0-)	87
PGM NIST 3	29.7	16.5	<mark>59.4</mark>	C C	C : 3588 (87%, 558+, 3030-	
PGM NIST HiQ	33.2	15.2	<mark>77.7</mark>	С	G:3(0%,3+,0-)	
MiSeq Edge	33.0	19.0	87.4	C C	T : 519 (13%, 111+, 408-)	
MiSeq NIST	31.6	17.9	88.4		N : 0	
HiSeq BC	30.6	16.9	88.3	C C		
SOLiD NIST	29.0	16.7	87.3		DEL: 222	
Average	29.2	17.4	74.6	C C		
St. Dev.	3.1	1.7	<mark>14.5</mark>	č		

G A T C C C T C C C

TACCA

It can also educate you about your technology.

Multiple Orthogonal Measurements

• Great approach for characterizing reference materials! SOFTWARE

	SRM-9947 A					
	Position 1393		Position 3242		Position 7861	
Platforms & Analysis	REF G%	VAR A%	REF G%	VAR A%	REF T%	VAR C%
PGM (CLC)	84.5	15.5	97	3	31.5	68.5
MiSeq (CLC)	82	18	96	4	12	88
PGM (Galaxy)	84.5	15.5	97	3	21.5	78.5
MiSeq (Galaxy)	82	18	95	5	11	89
PGM (GM-HTS)	85	15.0	97	3	13	83
MiSeq (GM-HTS)	83	17.0	97	3	12	88
PGM (STRait Razor)	84	16	97	3	12	88
MiSeq (STRait Razor)	83	17	96	4	11	89

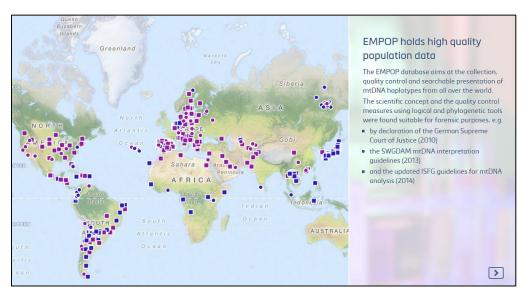
Research paper

Characterization of NIST human mitochondrial DNA SRM-2392 and SRM-2392-I standard reference materials by next generation sequencing

CrossMark

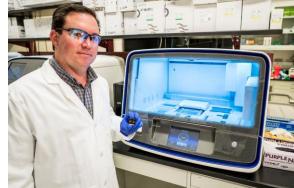
Sarah Riman^{*}, Kevin M. Kiesler, Lisa A. Borsuk, Peter M. Vallone

U.S. National Institute of Standards and Technology, Biomolecular Measurement Division, 100 Bureau Drive, Gaithersburg, MD 20899-8314, USA


Conclusions

- Reference materials
 - Can identify technical limitations/bias
 - Often need multiple measurements
 - Orthogonal techniques
 - Help to select best procedures

Population Scale Sequencing

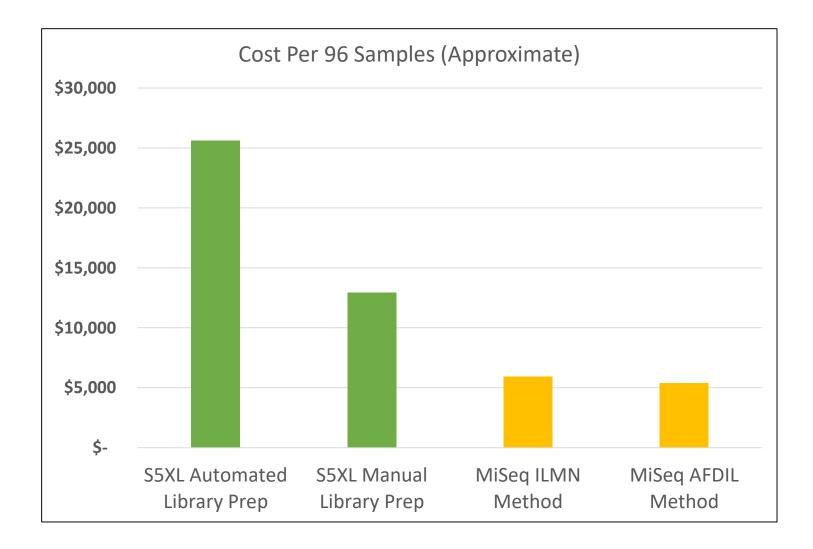

Project Goals

- Submit forensic-quality whole mtGenome data to EMPOP
 - Database used for match statistics
 - Current version (V4, Release 11)
 - n = 26,127 control region sequences
 - n = <u>256 whole genome</u> sequences
- NIST population samples (n > 1,000)
 - African American, Asian, Caucasian, Hispanic
- Sequencing plan
 - Start with Caucasian population
 - ≈ 440 mtGenomes

Project Plans

- What instrument do we use?
- What protocol/chemistry do we use?
- What analysis procedure do we use?
 - Software, data review, etc.

Ion Chef


Illumina MiSeq FGx

Ion Torrent S5

Project Planning: Instrument Selection

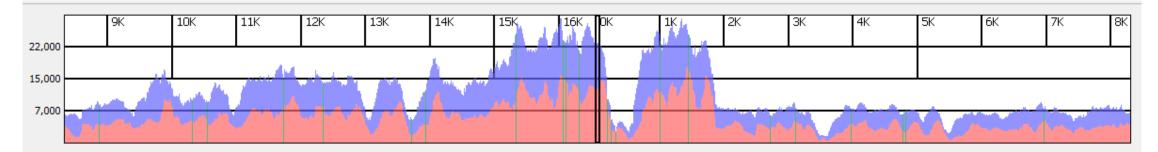
- Considerations
 - Cost
 - Time/labor
 - Automation

Project Planning: Protocol Selection

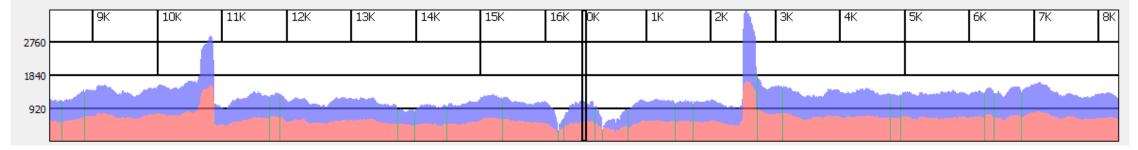
• Options

- Illumina mtGenome procedure
 - Long PCR primers developed by Dr. Mark Wilson's lab
 - TaKaRa LA Taq
 - Illumina Nextera XT library preparation
 - Illumina MiSeq v2 2x150 cartridge (per protocol)

Obta	Obtain the following PCR Primers from a general oligo supplier:				
	Table 6 User-Supplied PCR Primers1				
Primer Sequence					
	MTL-F1	5'- AAA GCA CAT ACC AAG GCC AC -3'			
	MTL-F2	5'- TAT CCG CCA TCC CAT ACA TT -3'			
	MTL-R1	5'- TTG GCT CTC CTT GCA AAG TT -3'			
	MTL-R2	5'- AAT GTT GAG CCG TAG ATG CC -3'			


¹Stawski, H., B. J. Bintz, E. S. Burnside, and M. Wilson. 2013. Preparing Whole Genome Human Mitochondrial DNA Libraries for Next Generation Sequencing (NGS) Using Illumina Nextera XT. Poster presentation at the 65th Annual American Academy of Forensic Sciences Conference. In: Proceedings of the American Academy of Forensic Sciences. Washington, D.C. www.aafs.org/sites/default/files/pdf/ProceedingsWashingtonDC2013.pdf

- mtGenome procedure used by Armed Forces DNA Identification Lab (AFDIL)
 - Long PCR primers from Fendt et al., BMC Genomics 2009, 10:139
 - TaKaRa LA Taq (GC Buffer & BSA)
 - Kapa HyperPlus Library Kit
 - Illumina V3 2x300 cartridge

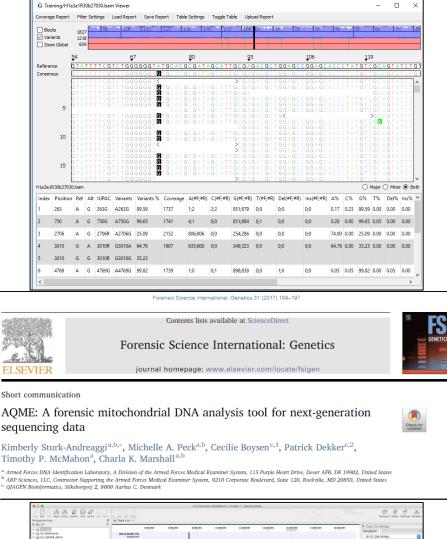


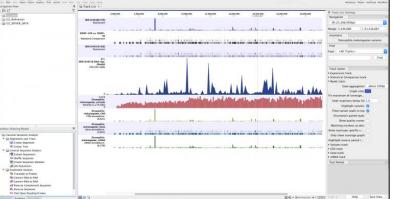
More Consistent Coverage Depth with Kapa HyperPlus

AFDIL method allows higher multiplexing with less likelihood of dropout sites

Illumina Whole mtGenome Method (Nextera Library Kit)

AFDIL Whole mtGenome Method (Kapa Hyper Plus Library Kit)


Haplogroup Estimation from EMPOP


• No surprise haplogroups

Sample	Missing Mutations	Private Mutations	Haplogroup	Continent
GT38086	none	T16189C	H1c21	Europe (H)
GT38087	none	none	T2b6b	Europe
GT38089	none	T16189C	J1c8a	Europe
GT38091	none	C10933T A15467G	V	Europe
GT38092	none	C198T A9327G A13801G T15670C	H5e1a1	Europe (H)
GT38093	none	none	H10	Europe
GT38094	none	A11252G	H65	Europe (H)
GT38095	-573.1C	G709A C9727T	l1a1b	Europe (I1a1)
GT38097	none	G8027A G15301A	K1a1b1	Europe
GT38098	A16183C -309.1C -309.2C	C16111T T152C	H1b1	Europe
GT38100	none	-309.1C G4655A	H1	Europe
GT38106	none	T2416C A8817G	H2a2a	Europe
GT38107	none	C3388A C8788T	U5a1a1	Europe
GT38108	none	T4373C T15313C	H1+16189	Europe
JA44327	-573.1C	G16474T	12	Europe (I)
JM28315	-309.1C	none	K2a6	Europe
JT52345	none	A16138G A73G	H5a1c1a	Europe
JT52346	none	none	H5g	Europe
MT97121	none	T16093C G7762A	J1c2	Europe
MT97122	none	none	T2b2b	Europe
MT97123	none	A16158G	T1a1	Europe (T1a)
MT97124	T16093C	-309.1C -524.3A -524.4C	K1a	Europe
MT97125	none	T152C	U5a2d1a	Europe (U5a)

Informatics

- Forensic mtDNA nomenclature is challenging!
- Commercial software now available
 - Softgenetics GeneMarker HTS
 - Compatible with forensic nomenclature
 - EMPOP formatted report
 - CLC Genomics Workbench
 - AFDIL / Qiagen developed AQME Tool
 - ThermoFisher Scientific
 - Converge mtDNA Analysis (released October 2018)

Conclusions

- Mitochondrial Genome Protocol
 - Cost and data quality directed decision process
 - Selected AFDIL-developed procedure for reference-quality samples
 - Even coverage
 - Higher multiplexing
 - Degraded samples will need a different procedure
 - Analysis method must be high-throughput
 - High accuracy required for EMPOP submission

Thank You! Questions?

Contact info: Kevin.Kiesler@NIST.gov A P P L I E D GENETICS National Institute of Standards and Technology U.S. Department of Commerce

$\sqrt{ m Acknowledgements}$ $\sqrt{ m }$

Armed Forces DNA Idenification Laboratory (AFDIL) Kim Andreaggi Charla Marshall

NIST Applied Genetics Group NGS Team Dr. Peter Vallone, Group leader Lisa Borsuk Sarah Riman Becky Steffen Katherine Gettings

- Funding
 - NIST Special Programs Office: Forensic DNA
 - FBI Biometrics Center of Excellence: *Forensic DNA Typing as a Biometric tool*.

Q&A Session 10:55 – 11:05 Break 11:05 – 11:20

• Digital & Trace Tour signups please report to registration booth @ 11:00

