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Geometric Variability in Manufacturing

•Miscommunication and misinterpretation can result in low acceptance 
rates or expensive rework. 

•Math models can not only prevent such problems but also provide a better 
medium for PMI information transfer between modern digital tools: CAD, 
CAM, CAE, CMM…
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• Geometric dimensions & tolerances are of concern in all aspects of 
product development. 
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GD&T standards vs Math Models

 Over the past decades, many models have been proposed for tolerance 
representation & analysis, broadly classified as:

 PARAMETRIC MODELS [Hillyard et al; Gossard et al]
 OFFSET ZONES [Requicha et al]
 VARIATIONAL SURFACES [Martinsen 93, Turner 90]
 VECTOR SPACES [Turner & Wozny 90, Clement et al, Davidson & Shah et al]

 If a model is to gain acceptance, it must be consistent with engineering 
practices that were driven by GD&T standards

Note that Y14.5.1 does not propose any particular math model, but attempts to 
give rational explanations

 In engineering practice, tolerances are specified using national and 
international GD&T standards, such as ASME Y14.5M and ISO 1101.

 These standards are not based on any math foundation; they are a set of 
symbols and conventions based on technical drawings

 STEP PMI data models are based on these very same conventions
 This is not conducive for model based engineering!
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ASME Y14.5 Conventions: 
A Quick Look

Geometric variations have been decomposed into specific types 
because they affect function & assembly in different ways

Certain tolerances are refinements of others; some 
zones float within other zones (Rule#1)

Datum order influences directions of 
measurements

Zone size depends on tolerance value and modifiers; 
Zone location depends on tolerance type and datums

Each variation is represented by a 
zone whose shape depends on the 
toleranced feature type; 

Bonus Tolerance & Shift : 
Material conditions (MMC, LMC) 
can enlarge position tolerance 
zones by the difference between 
MMC (or LMC) and actual size 
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Survey of GD&T Math Models

PARAMETRIC MODELS
Closely related to parametric CAD: uses the same set of 

parameters and constraints as those used in geometry 
construction; Tolerances are +/- variations applied to 
dimensions; the math model is the constraint set

Cannot support form tolerances, datum ref frames, 
directional relations,…

OFFSET ZONE MODELS
Tolerance zone created by Boolean subtraction of volumes 

obtained by offsetting a part’s boundaries by equal amounts 
on either side

Cannot distinguish between variation types (size, form, 
orientation, position)

No DRFs, material or other modifiers

VARIATIONAL SURFACES
NURBS/B-spline Control Points are assigned tolerance values
Non-intuitive- no explicit relation between CPs and GD&T
Cannot differentiate between different tolerance classes
No DRFs, modifiers, zones
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Vector Space Models (Early work)

The basic idea is to map geometric variation parameters to a 
hypothetical n-dimensional Euclidean space
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Whitney’s 3D vectorial tolerance model for size
Max boundary in a “kinematic parameter space”

Turner’s 2D vector model of size: 
The seed of this idea can be found in Josh Turner’ 
work from the 90’s; but it was not pursued further
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Vector Space Models SoA

•Two groups have advanced these types of models to a high degree 
of maturity:
o T-maps: Developed at Arizona State since 1995
o Deviation Space & TTRS at U. Cachan, Annecy (France)

•Treats geometric entities (points, line, planes) as if they were rigid 
bodies with DOFS 

•Models how each DOF of each entity is controlled
•Generates convex regions in n-dimensions to represent ALL 
combinations of tolerance variations 
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ASU GD&T Math Model*

TOPOLOGICAL MODEL (DoF algebra; datum flow):
Similar to topology in solid modeling
Models relationships between all feature control
frames, datum reference frames (DRF) and their
precedence (datum flow chain)
provides basis for geometric validation of D&T
scheme, loop detection for analysis and DoFs
Supported by DoF algebra

METRIC MODEL (T-Maps):
models the composite quantitative effect of all

tolerances on a given feature
 interaction of size, form, orientation, position is

clearly identified
Rule #1 is embedded in the formulation
relative volumes of regions can be used to study

trade-offs in tolerance allocation (size vs form vs
orientation..)

* US Patent No. 6,963,824
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Topological Model: DoF Algebra

•DRFs and TRFs  are clusters of points, lines and planes with 
different geometric relations to each other (coincident, //, , …) 

•DoF Algebra includes symbolic ops to determine free and invariant 
DoFs of entity clusters. 

•This algebra was validated by applying it to all cases in the Y14.5.1. 
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Algebraic Operators

Algebraic Relations
•[A]  [B] = [B]  [A] ………………Commutative relation
•[A fdof]  [Ainv] = []=[000,000] …….Null set
•[A fdof]  [A inv] = [I]=[111,111]…… “Identity” vector
•[Ainv] = RCP {[Afdof]} …. ……… Reciprocal relation (or Ā)
•+Standard Associative, Distributive and Idempotence relations
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Combining DoFs for clusters
[Xfdof] = [Afdof]  [Bfdof];
[Xinv] = [Ainv]  [Binv]

•DoF algebra models datum flow chains,
DRF combinations and tolerance classes

•The controlled DOFs are the intersection
of the DOFs of three tolerance elements.

•No matter what the target cluster is, the
DOF vector of target entity is one of six
combinations.
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Tolerance Maps for size:
planar feature

Any plane (point)      = 11 + 22 +33

Basis Planes

Cylindrical bar cross-sections

Cross section of 
planar T-map©

LL+t
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Form & Orientation Tolerances: 
Planar Features

ORIENTATION zone (t”) translates 
can rotate about x- or y-axes

FORM zone (t’) translates 
and rotates about x- or y-axes

Addition of orientation tol  t” to size 
reduces the allowable tilt 
Orientation T-map can be obtained 
from size by truncating the 3 axis

SIZE + ORIENTATION T-map

Perfect form

Worst form

As per Y14.5 Rule#1
• Worst form occupies the entire zone
• Perfect form occupies none
Therefore, size + form is modeled by 
splitting into two planar T-maps that 
together must conform to size map

SIZE + FORM T-map

FLOATING ZONES
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Tolerance Maps For Lines: 
4-D Solid of Points

2D cross-sections 
of the T-Map

3 = 5 = 0
2 = 4 = 
0

4 = 5 = 
0

$ = 1$1+ 2$2+ 3$3+4$4+ 5$5

Perfect form

Worst form

3D cross-sections: Trade-off between position & form

$=1$1+ 2$2+ 3$3+ 4$4+ 5$5
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Circular Runout Model
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•circular X-sec, involves two variables: 
circularity (annular zone) + eccentricity
(a) An annular tolerance-zone of amount 
t′ which lies between the inner and outer 
boundaries γ1 and γ2 of radii ri and ro, 
respectively. (b) Its 2D T-Map

(a) A cylindrical tolerance-zone of height t ̀
which lies between the upper and lower 
boundaries of y1 and y2. (b) Its 2D T-Map.

planar (end) involves two variables: 
linear offset + angle

Circular runout is a composite tolerance 
that controls both circularity and 
concentricity (position), independent of size

Applied to any axisymmetric X-sec
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Line Profile: parametric model

•Profile tolerances control the shape, size, and position of complex features, 
e.g. turbine blades and pump vanes.  

•For line profiles, four variables are required to identify a variation of the 
theoretical shape within its tolerance-zone.  
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 Example: A square line-profile
 For line profiles, each point in the T-Map represents one square with a given 

size and x-, y-, and θ-position in the tolerance-zone. Consequently, the T-
Map is a 4-D geometric shape.
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T-maps for Feature Patterns

•For each part, the T-Map that models limits to relative displacements 
between hole patterns formed by transforming the T-Map for each 
individual feature in its local frame of reference to a global frame that is at 
the center of the pattern. 
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Part-level T-Map for a 
circular (square) pattern of 

four holes

Part-level T-Map for opposite 
holes, represented in frame xyz.
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T-map Catalog: Sample page

T-map Geometry, tolerance, datum T-map Geometry, tolerance, datum

Geom: Rect bar; plane
Tol class: size
Datum: none

Geom: Rect bar; plane
Tol class: size + orient
Datum: planar face

Geom: Round bar; plane
Tol class: size
Datum: none

Geom: Round bar; plane
Tol class: size + orient
Datum: offset axis

Geom: Round bar; plane
Tol class: size + orient
Datum: planar face

Geom: Planar circular face
Tol class: circular runout
Datum: axis

Geom: traing bar; plane
Tol class: size
Datum: none

Geom: Rect bar; plane
Tol class: size + orient
Datum: two datums

More than 50 T-map models have been developed so far based on 
combinations of target feature, tolerance type and datum type
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Material Modifiers in T-map models

4-D T-Maps: size is the 4th dimension
The dipyramid now is the T-map for 
position of the medial plane.

If pos tol uses 
MMC modifier

If pos tol uses 
RFS modifier

Hyper-Volume computation 
Hyperpyramid of dimension n

Hyperprism of dimension n

Insight: if t = 

t = pos. tol
 = size tol.



ARIZONA STATE 
UNIVERSITY

 J. Shah & J. Davidson

T-maps for Feature Patterns

•Pattern T-map is similar to Axis T-map but 
with one added dimension viz. theta.

•Theta represents possible rotation about dz
axis.

dy

dx

dz
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Tolerance Analysis with T-maps: 
Minkowski Sums 

Individual 
Tolerance Maps

q
23

22

21

s

q’

s

12

13

11

Minkowski sum: C = Uc, 
where c = a + b and a
 A; b  B

Variational possibilities – infinite combinations

Accumulation map
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Transforming T-maps from local to global CS

•Each feature’s variation in the target gap is evaluated one by one 
by generating Local T-Map for that feature and then transforming it 
to Global coordinate frame

T-Map transformed
from LCS to GCS (shear)

z
LCS

x

y
GCS

x

y

rotation matrix:
z

T-Map in LCS

T

T = Tolerance specified on feature

21
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Analysis with T-maps: Minkowski
sum

• Minkowski Sum of two T‐Maps A and B is a vector sum of its vertices in 6
dimensional space. One vertex is a six dimensional vector. Both T‐Maps are
represented with set of vectors.
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• Every vector in T‐Map A is added to all vectors 
in T‐Map B using vector sum operation.

• Minkowski Sum thus produced is represented as 
A⨁ B.

• Internal points so produced are not useful for
further analysis and are omitted by forming a
convex hull out of generated vectors.

• Further redundant vertices are eliminated using 
qhull to produce a convex hull. Which represents 
Minkowski Sum of two Tmaps.

T‐map 1 T‐map 2 Vector Addition Reduced#

# Vertices 6 14 14 x 6 = 84 22
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Worst case analysis with T-maps: 
Functional & Accumulation Maps

Functional Map
(e.g desired clearance)

Accumulation Map (variations of 
all contributors : Minkowski sum 
of contributor T-maps)

Does accumulation map fit inside 
functional map?
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Statistical Analysis with T-maps

•Sensitivity of each feature to variation in target gap is evaluated one 
by one by generating Local T-Map for feature, transforming it to 
Global coordinate frame where target gap is located and then by 
fitting functional T-Map over Global T-Map.

•Sensitivity is ratio of tolerance associated with functional T-Map to 
the tolerance on feature

T-Map transformed
from LCS to GCS

Functional T-Map fitted 
over transformed T-Map

Tf

T-Map in LCS

T

T = Tolerance specified on feature
Tf = Functional tolerance at target gap

contributed by feature
S = Sensitivity of feature to target gap

= Tf / T

24
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Benchmarking T-maps
• T‐map generation, transformation, accumulation procedures were applied to complex 
assemblies under a DMDII project

• This surrogate assembly will be used to illustrate the process because of RollsRoyce & 
Export Control restrictions

3D statistical 
analysis with 

Siemens VisVSA

1D Tolerance Charts 
(worst case)

Inter-op module

*.pdo (filtered)

*.actf

*.jt

Siemens NX CAD 
(define parts & 

assembly)

3D tolerance 
analysis with 

Minkowski sums

3D statistical 
analysis

T-Maps generation 
module

Designer

T-map 
library

*.actf *.actf

3D Monte Carlo 
simulation

Generate variational
equations

Compare predicted variations

Siemens VisVSA
(define features, GDT, 
stack, measurement)

25
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Worst Case analysis for Assembly

૙. ૙૞
૝ૢ

૙. ૙૞
૞૛

Housing Cover Speed Sensor Gear

Thrust Washer Thrust Washer

ψ

φ

Hub

Input GearShaft

T-Maps for features in stack for Gap 1

26
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Sensitivity Analysis for Assembly

Sr.No. Part Tol. Type Tol. Value
T

Sensitivity
S

Mean


SD (Six Sigma)


1 Hub Size 0.10 1.03 0 0.0172
2 Shaft Runout 0.10 1.52 0 0.0253

3
Speed Gear 
Sensor Size 0.20 1.00 0 0.0333

4 Parallelism 0.05 0.00 0 0.0000
5 Washer Thrust Size 0.10 1.00 0 0.0167
6 Parallelism 0.05 0.00 0 0.0000
7 Cover Size 0.20 1.00 0 0.0333
8 Parallelism 0.05 0.00 0 0.0000
9 Runout 0.10 0.13 0 0.0022
10 Housing Size 0.20 1.00 0 0.0333
11 Parallelism 0.05 0.00 0 0.0000
12 Runout 0.09 0.13 0 0.0020
13 Input Gear Size 0.10 1.19 0 0.0198
14 Runout 0.03 0.93 0 0.0046
15 Washer Thrust Size 0.10 1.00 0 0.0167
16 parallelism 0.05 0.00 0 0.0000

ࢂ ൌ 	෍ࡿ	 ∗ ࢀ

Where V = variation in clearance (Random variable)
S = Sensitivity (Constant)
T = Tolerance (Random variable)

ࢂ ൌ ૚. ૙૜T1	൅	1.52	T2	൅	T3	൅	T7	൅	0.13	T9	൅	T10	൅	0.13	T12	൅	1.19	T13	൅	0.93	T14	൅	T1૞
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Benefits of the T-maps Math Model

• Models distinctly all types of tolerances incuding freeform profile
• Models tolerance variations in 3D
• Represents floating zones for orientation and form
• Accounts for material conditions: Models the tradeoff between 

size/orientation and position (bonus)
• Accounts for the choice and order of datum reference frames 

(DRFs)
• Can be used for worst case or statistical analysis
• Metrics can be used to aid in the allocation of tolerances in a 

stackup
• Is extendible to other features and to clusters of features

• All tolerance-Maps are convex bodies: allows use of some standard 
computational algorithms

• Is in Euclidean space: metric computations can be made using 
standard formulae


