

Matching Randomly Acquired Characteristics in Footwear Impressions

Weiqing Chen, Martin Herman Information Technology Laboratory, NIST

Purpose

• Obtain a quantitative similarity score for footwear impression comparisons.

Class characteristics

Class Characteristics

- Design(pattern)
- Size
- General wear

Vans 11

Vans 11

Randomly Acquired Characteristics(RACs)

Definition

A RAC feature is a feature on a shoe outsole resulting from random events.

- RACs are not replicated in every impression.
- Research has demonstrated that the chance duplication of even one characteristic's position, orientation, shape and size on another shoe of the same size and design would be rare.

Randomly Acquired Characteristics(RACs)

Types

Include but not limited to:

- Cuts
- Scratches
- Tears
- Holes
- Foreign objects
- Abrasions
- Debris

FORENSICS@NIST

Workflow of RACs Comparison

Global Registration

Test impression

Questioned impression

Global registration result

Local Registration

result

Registration Methods

Global Registration

- Principal Axes and Mutual Information
- Point Configuration Methods

Local Registration

Mutual Information

$$I(X;Y) = H(X) + H(Y) - H(X,Y)$$
$$I(X;Y) = \sum_{x} \sum_{y} p(x,y) \log \frac{p(x,y)}{p(x)p(y)}$$

Impression comparison based on RACs

Impression comparison based on RACs

RACs Comparison

Comparison metric

• Normalized cross correlation

$$r = \frac{\sum_{m} \sum_{n} (A_{mn} - \bar{A}) (B_{mn} - \bar{B})}{\sqrt{(\sum_{m} \sum_{n} (A_{mn} - \bar{A})^2) (\sum_{m} \sum_{n} (B_{mn} - \bar{B})^2)}}$$

Comparison scores

RAC No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	Average
Q1 vs Test	0.9400	0.8917	0.8595	0.8617	0.7164	0.8815	0.9105	0.8687	0.8212	0.9152	0.9110	0.8790	0.7357	0.9155	0.6926	0.8534
Q2 vs Test	0.4039	0.5283	0.4779	0.8714	0.8861	0.3849	0.3624	0.6873	0.3329	0.8443	0.5301	0.4497	0.3954	0.8281	0.2596	0.5495

Impression comparison based on RACs

Performance of the comparison algorithm

Performance of the comparison algorithm

Performance of the comparison algorithm

Conclusion

Include more information of RACs

RAC comparison score can help us to give a conclusion of the comparison between questioned impression and known impression according to SWGTREAD range of conclusions scale. The comparison approach used in this presentation is only based on the pixel values of corresponding pixels. The other information of the RACs such as shape, orientation, size will also be incorporated into the similarity score.

Find better methods to combine similarity scores of all RAC pairs into a final score

Different RACs have different importance to the final score due to their different size, shape complexity, orientation and etc.

Reference

- 1. William J. Bodziak. Forensic footwear evidence. CRC Press. 2017
- 2. <u>https://www.swgtread.org/standards/published-standards</u>
- 3. Yoram Yekutieli, Yaron Shor, etc. Expert assisting computerized system for evaluating the degree of certainty in 2D shoeprints. Technical Report. 2016.
- 4. Josien P. W. Pluim, J. B. Antoine Maintz, etc. Mutual information based registration of medical images: a survey. IEEE Transactions on Medical Imaging. 2003.
- Jacueline A. Speir. A quantitative assessment of shoeprint accidental patterns with implications regarding similarity, frequency and chance association of features. Technical report. West Virgia University. Feb. 2018.

Acknowledgement

- We wish to thank **Gunay Dogan**, **Hari Iyer**, **Steven Lund**, **Yooyoung Lee** for helpful discussions.
- We wish to thank our NIST colleagues for donating so many shoes to our team.

FORENSICS@NIST