

VM Leakage and Orphan Control in Open-Source Clouds

C. Dabrowski and K. Mills
Information Technology Laboratory

NIST
Gaithersburg, MD USA

{cdabrowski, kmills}@nist.gov

Abstract—Computer systems often exhibit degraded
performance due to resource leakage caused by erroneous
programming or malicious attacks, and computers can even
crash in extreme cases of resource exhaustion. The advent of
cloud computing provides increased opportunities to amplify
such vulnerabilities, thus affecting a significant number of
computer users. Using simulation, we demonstrate that cloud
computing systems based on open-source code could be
subjected to a simple malicious attack capable of degrading
availability of virtual machines (VMs). We describe how the
attack leads to VM leakage, causing orphaned VMs to
accumulate over time, reducing the pool of resources available
to users. We identify a set of orphan control processes needed
in multiple cloud components, and we illustrate how such
processes detect and eliminate orphaned VMs. We show that
adding orphan control allows an open-source cloud to sustain a
higher level of VM availability during malicious attacks. We
also report on the overhead of implementing orphan control.

Keywords- availability; cloud computing; modeling;
reliability; scalable fault resilience techniques

I. INTRODUCTION
The impact of resource leakage on computer performance

is a well-known problem [1-8]. A number of studies have
shown how programming errors [1-3, 7], data corruption
[5], and events such as external malicious attacks [6, 9] can
cause resource losses, which degrade system performance.
Ultimately, if needed resources are depleted, or exhausted, a
system can fail [4, 8]. We extend the general concept of
resource leakage to encompass virtual machine (VM)
leakage in clouds.

The advent of cloud computing has resulted in many
innovative applications, which promise to transform the
practice of information technology. Much of this innovative
work has centered on open-source cloud software [10-14],
which has gained widespread distribution. Such open-source
software may be used to establish cloud systems for
experimentation, for private use and for public use.
Unfortunately, development and distribution sites are
susceptible to attacks that can place Trojan code into
software packages [15]. Such attacks have occurred on both
proprietary software [16] and open-source software [17-21].
This paper considers a scenario where Trojan code is
inserted into an open-source Web server, used as one
component in an open-source cloud software distribution.

The Trojan code randomly discards Web messages, a simple
malicious attack requiring no knowledge of the internal
operation of the cloud software.

Using simulation, we demonstrate how a cloud system,
based on the infected software, can exhibit degraded
availability of computing resources in the form of virtual
machines (VMs). We describe how the simple message-
discard attack leads to VM leakage, causing orphaned VMs
to accumulate over time, exhausting the pool of resources
available to users, and leading to a collapse in system
performance. We identify two kinds of VM orphans that
could exist in clouds and the circumstances under which
they are created. We then suggest a set of orphan control
processes and provide examples of their use to detect and
eliminate orphaned VMs. We show that adding orphan
control allows a cloud system to sustain a higher level of
VM availability during message-discard attacks. In addition,
we show that more than one orphan control method is
needed to prevent performance collapse. We also report on
the overhead of implementing orphan control. In doing this,
we hope to provide awareness of the potential for resource
leakage in clouds, and to further research on cloud
reliability.

The paper consists of six sections. Section II describes
previous work on resource leakage in computer systems.
Section III overviews the cloud model used in this study.
Section IV defines the concept of VM leakage in cloud
systems, identifies potential causes, and proposes remedial
VM orphan control methods. Section V describes the
experiment scenario used here, in which a malicious attack
on an open-source cloud leads to significant VM leakage.
Section VI provides experiment results, and details both the
potential impacts of VM leakage, and the remedial effects of
orphan control. Section VII concludes.

II. PREVIOUS WORK
The problem of resource leakage in computer systems has

received significant attention, most particularly with respect
to memory leaks in executing programs coded in languages
such as C [1] and Java [2], or in garbage collectors [3]. The
effect of memory leaks has also been considered in the
study of software aging in Web servers [4]. Other studies
use the more general term resource leakage [5-8], and some
use the term resource exhaustion to denote total depletion of

2011 Third IEEE International Conference on Coud Computing Technology and Science

978-0-7695-4622-3 2011

U.S. Government Work Not Protected by U.S. Copyright

DOI 10.1109/CloudCom.2011.84

554

needed system resources, including [6, 8, 9]. The term
orphan has been used [5] to refer to leaked database records.
Hence, the general concepts associated with resource
leakage in computer systems are established. However, to
date, the resource leakage problem has not been studied for
VMs as resources in computational clouds.

III. MODEL OF AN OPEN-SOURCE CLOUD
We based our study on Koala [22], a discrete-event

simulator inspired by the Amazon Elastic Compute Cloud
(EC2) 1 [23] and by the Eucalyptus open-source software
[11]. Using published information describing the EC2
application programming interface (API) [24] and available
virtual machine (VM) types [25], Koala models essential
features of the interface between users and EC2. Koala
models four EC2 commands, three of which we use here:
RunInstances DescribeInstances, and TerminateInstances.
The internal structure of Koala is based on three Eucalyptus
(v1.6) open-source cloud software components: cloud
controller, cluster controller and node controller. As in
Eucalyptus, these Koala components communicate using
simulated Web Services [26]. In this study, Koala simulates
20 clusters and 200 nodes overall, where each node can be of
one of four possible platform configurations (see [27] for
details). Koala is organized as five layers: (1) demand layer,
(2) supply layer, (3) resource allocation layer, (4)
Internet/Intranet layer and (5) VM behavior layer. Elsewhere
[28], we provide details of each layer. Here, we summarize
and identify selected parameter values used in the
experiments described in Sec. V.

In a Koala simulation, a variable number of users (500)
execute in a cycle. During each cycle, a user issues a
RunInstances request to the cloud controller to request a
minimum and maximum number of instances of one or more
VM types. Each VM type is defined to include an integrated
set of virtual cores (processors), memory and disk space. The
VM types and quantities a user selects depend upon the
user’s type, which is also randomly determined (see
[27]).The cloud controller may respond to a RunInstances
request with an allocation of instances between the minimum
and maximum for each requested VM type or with a NERA
(not enough resources available) fault. A full grant denotes
that a user was allocated the maximum requested instances
of each VM type. A partial grant denotes that allocated VMs
were below the maximum requested. If VM instances are
allocated, a holding time is then determined (mean 4 hours).
Upon receiving a grant response, the user issues a
DescribeInstances request to determine when granted VMs
have booted. At the end of the holding period, the user issues
a TerminateInstances request to stop any remaining running
instances, which is called the final termination request. If
this request fails, the user retries (0 to 3) times before giving
up. After termination, or when retries are exhausted, the user
pauses for a time (mean 7.5 minutes) and then starts a new
request cycle.

1�Any mention of commercial products within this paper is for information
only; it does not imply recommendation or endorsement by NIST.�

During the holding period following a grant, users may
randomly terminate subsets of running instances, which we
call intermediate termination requests. Upon failure of an
intermediate termination, a user retries 0 to 3 times for
individual instances. If the cloud controller responds to a
RunInstances request with a NERA, then the user waits for a
mean time of 7.5 minutes before retrying the request. The
user retries for a random period (mean 2 hours) before
resting for a random period (mean 8 hours), until a random
number of retry/rest periods (mean 4) occur. Then, the user
abandons the request and starts a new cycle.

Koala patterns resource allocation after Eucalyptus
procedures, which involve two decisions: (1) on which
cluster should requested VMs be allocated and (2) on which
nodes within the cluster should VMs be allocated. Allocating
all VMs in a single request to the same cluster ensures that
inter-VM communications remain local to one cluster. At the
cluster level, Koala simulates the Eucalyptus first-fit
algorithm to choose nodes for VMs. First-fit simply searches
nodes by identifier from first to last until a node is found that
can accommodate a given VM type. In making an
accommodation decision, the cluster controller compares
resources required by a VM type against a node’s availability
of virtual cores, disk space and memory. If no nodes can
create the VM, the cloud controller receives a NERA fault.

At the cloud level, Koala simulates the Eucalyptus least-
full-first algorithm, which carries out an initial estimation in
which it polls the clusters to find out which can
accommodate the VMs requested and then orders the list
from the least to most full (we ordered ties by increasing
time at which clusters responded). Then the cloud controller
selects the first cluster from the list and asks that the VMs be
created. If the VMs are created successfully, then the cloud
controller returns the positive result to the user; otherwise,
the cloud controller reassigns the VMs to the next cluster on
the list. This process continues until VMs are created or until
all clusters have been exhausted. If no clusters can create the
VMs, then the user receives a NERA fault.

IV. VM LEAKAGE AND ORPHAN CONTROL
We use the term VM leakage to refer to VMs that exist on

node controllers but that are unknown to any user and that
are not in the process of being terminated by a cloud or
cluster controller. Such VMs are considered orphans
because they can persist indefinitely. Orphaned VMs
constitute a type of resource leakage, because they retain
assigned computing resources, including virtual cores,
memory, disk space, and network channels. These resources
cannot then be allocated for any other purpose, and so are
effectively lost (or leaked).

A. Causes of VM Leakage and Orphan Creation
Orphaned VMs are created under two circumstances. In

the first, which gives rise to what we will call creation
orphans, VMs are successfully created in response to a user
request, but confirmation messages, reporting VM creation,
are lost when transiting among elements within the demand
and supply layers. In our model, there are three such

555

opportunities: (1) a lost message from node to cluster
controller that indicated successful creation of a VM; (2) a
lost message from cluster to cloud controller that indicated
successful (full or partial) allocation; or (3) a lost message
from cloud controller to user that indicated a successful
result. In (1), the result is a single orphaned VM. However,
in (2) and (3), all VMs allocated for a request become
orphans, and the amount of leakage can thus be quite large.
In all three cases, the user will resubmit the request,
according to the retry regimen described above. Each re-
request is treated as a new request by the cloud.

The second circumstance, leading to what we will call
termination orphans, occurs after VMs are created by the
cloud and the user is notified successfully. Subsequently,
the user issues a TerminateInstances request for one or more
VMs. If the user receives confirmation of successful
termination, the user considers the operation to be finished.
However, if the user receives no reply, the user retries the
terminate operation as described above, until either success
is obtained or the number of retries is exhausted. Within the
cloud, terminate operations may fail due to lost messages
when relaying the request from cloud to cluster controller,
or from cluster to node controller, or because the terminate
operation fails on the node. Eucalyptus makes no provision
for retrying failed termination requests by either the cloud or
cluster controllers; instead such failures are merely logged.
Thus, the related VMs will remain un-terminated unless a
user termination request eventually reaches the related node
controllers. If a user abandons termination retries, the
affected VMs will persist on nodes until an administrator
scans the log and manually terminates them.

If termination orphans arise due to lost termination
requests sent from user to cloud controller or from cloud to
cluster controller, then all VMs in the request may become
termination orphans. In this case the number of orphans and
the resulting resource leakage can be quite large. This is
particularly true for final terminations, which encompass all
VMs held by a user. When termination-related messages are
lost between cluster and node controller, only individual
VMs become termination orphans.

B. Orphan Control Methods
Neither creation orphans nor termination orphans are

detected and removed automatically by Eucalyptus. We
therefore devised two orphan control methods for this
purpose. First, to eliminate creation orphans, we instituted a
node controller process, which monitors receipt of
DescribeInstances requests for VMs. VM requesters use
replies to DescribeInstances requests to determine when
allocated VMs are ready for logon. Since these requests
originate from users, they indicate a user’s awareness of the
VM. In the node controller, a creation orphan monitor
relates arriving DescribeInstances requests to recently
created VMs. If a DescribeInstances request is not received
for a VM by a specified time (2 h) after boot up, the monitor

declares the VM to be an orphan, terminates it, and releases
its resources for use by the supervising cluster controller.

Second, to mitigate termination orphans, we extended the
Eucalyptus protocol to provide a persistent termination
capability to both the cloud and cluster controllers.
Persistent termination simply means resending termination
requests until the receiver responds that either (1) the
termination request has been received and normal
termination commences, or (2) the termination operation
was completed earlier and no further action is needed. A
persistent terminator is activated by the cloud or cluster
controller when no response is received to a normal
termination request within a timeout (90 s). Once activated,
the cloud persistent terminator resends termination requests
to a cluster controller at specified intervals (90 s) until it
receives one of the two desired responses, or until a 2 h
termination period ends. After the first three retries, the
cloud persistent terminator lengthens the retry period (to
150 s) and then doubles it on each retry. If the termination
period ends, the cloud persistent terminator ceases and
notifies an administrator that manual intervention is needed
to terminate the orphaned VMs and free their resources.
When activated, the cluster persistent terminator also
attempts three retries to the node controller (every 90 s),
before increasing the retry interval in the manner described
for the cloud persistent terminator. This process continues
for a shorter period (900 s), since the retry encompasses
only a single orphaned VM. Since persistent termination
adds complexity to the cloud and cluster controllers, we
elected to limit persistent termination to final termination
requests. Because intermediate termination requests are
excluded, failed intermediate terminations can result in the
affected VMs persisting until a final termination request
succeeds. We call such affected VMs temporary orphans.

V. EXPERIMENT DESIGN
In designing our experiment, we sought to address the

following questions. How does VM leakage affect system
performance when lost messages interfere with resource
allocation (runInstances) and termination operations? Can
orphan control methods mitigate performance degradation
caused by VM leakage? What are the costs of orphan
control and how do such costs increase as the rate of VM
leakage increases? We modeled an attack scenario in which
Trojan code is introduced into an open-source distribution
for Web server software. The Trojan code modifies the Web
server so that arriving and departing messages are discarded
randomly with some probability. We assume that the
maliciously modified Web server is deployed by all users,
cloud controllers, cluster controllers, and node controllers.

To understand effects from increasingly frequent message
discards, we simulated our model under six, order-of-
magnitude, increases in message discard probability from a
lowest probability (10-6) in which one in 106 messages is
lost to a highest probability (10-1) in which one in 10

556

messages is lost. All messages, regardless of type or
component of origin, are subject to possible loss.

To assess the benefits of orphan control, we modeled the
operation of the system at each of the six message loss rates
(10-6 to 10-1), both with and without each of the two orphan
control methods, creation orphan control and persistent
termination, identified in Sec. IV. Holding the configuration
parameters described in Sec. III constant, we executed
Koala during 1000 simulated hours for each of 24
combinations: on/off for two orphan control processes × six
message loss rates. During the simulation, we measured
system performance at 1 h intervals, as described below.

VI. RESULTS AND DISCUSSION
We counted the number of VMs held by both users and

node controllers and the number of orphans created at the
end of the 24 1000–hour simulations. With no orphan
control, Fig. 1 shows that as message loss rate increases, a
large gap opens between the number of VMs held by node
controllers (over 11 000 at the highest loss rate) and the
number held by users. When the message loss rate reaches
10-2, the number held by users falls to nearly zero. In
contrast, with creation orphan control and persistent
termination operating, the gap stays relatively small until the
highest message loss rate, where node controllers hold about
14 000 VMs, while users hold only 6 000. Figure 2 shows
that without orphan control nearly all VMs held by node
controllers become orphans at the two highest message loss
rates. This means that the Trojan attack has led to creation
of orphans that consume most of the simulated cloud’s
computing resources, leaving none to allocate to incoming
requests. Hence, due to leaked VMs, nearly total resource
exhaustion occurs. Fig. 2 also shows that almost all of the
leaked VMs arise from creation orphans. We say more
about this below.

Figure 1. Number of VMs held by users and node controllers with (blue)
and without (red) creation orphan control and persistent termination at the
end of the1000-hour simulated period as the message loss rate increases.

To measure the influence of VM leakage on cloud

performance, we tracked the number of user requests
submitted to the cloud and recorded the total proportion of
users granted some VMs, along with the proportion that

were full and partial grants. We also recorded the proportion
of users not granted VMs, users who subsequently
abandoned the request process.

Figure 2. Number of VMs held by node controllers and number of orphans
at the end of the 1000-hour simulated interval as the rate of message loss
increases. Counts are plotted for the case without persistent termination and
creation orphan control.

Figure 3(a) shows that without orphan control, the
number of total grants (full and partial) drops sharply as the
message loss rate passes 10-3. At the same time, the number
of un-served users increases. At the highest message loss
rate, 94.4 % of users are not served, while only 1.5 % of
users receive grants. For the remaining 4.1 % of requests
(not graphed), users are still engaged in the request cycle.
On the other hand, with both orphan control processes
operating, Fig. 3(b) shows the rate of total grants decreases
only slightly until the highest message loss rate is reached,
at which point a noticeable drop appears, as 5.7 % of users
are not served, while 0.4 % are still actively requesting
VMs. We conclude that, without orphan control, the
collapse of system performance at higher message loss rates,
as illustrated in Fig. 3(a), is attributable to resource
exhaustion due to orphan VMs. This conclusion is
supported by more detailed analysis below.

These results do not mean that our orphan control
procedures free a cloud of all the effects of VM leakage.
Figure 3(b) also shows that even with orphan control, the
proportion of full grants decreases and the proportion of
partial grants increases at the highest message loss rate, to
the point that partial grants are more likely. This change can
be related to Fig. 1, which shows that node controllers hold
more VMs than users at the highest loss rate, even with
orphan control. This gap occurs because we chose to limit
persistent termination to only final termination requests.
Thus, when earlier intermediate termination requests from
users fail, the related VMs continue to occupy cloud
resources as temporary orphans until a final termination is
issued and succeeds. Though these temporary orphans do
not exhaust resources, Fig. 1 shows that, at the highest loss
rate, temporary orphans still occupy a significant portion of
VM resources. Thus, the cloud is less able to fully satisfy
requests and must issue more partial grants.

0

2000

4000

6000

8000

10000

12000

14000

16000

Nu
m
be

r�o
f�V

M
s

Probability�of�Message�Loss

Node�controller�VMs
Orphaned�VMs
Creation�Orphans

0

2000

4000

6000

8000

10000

12000

14000

16000

Nu
m
be

r�o
fV

M
s

Probability�of�Message�Loss

User�VMs�(with)
Node�controller�VMs�(with)
User�VMs�(without)
Node�controllers�VMs�(without)

557

(a)

(b)

Figure 3. Disposition of user requests (a) without orphan control and (b)
with creation orphan control and persistent termination.

Recall that in Fig. 2 nearly all VM leakage is due to
creation orphans (only four are termination orphans).
Without orphan control, the dominance of creation orphans
occurs for two reasons. First, RunInstances requests occur
before TerminateInstances requests. Second, Eucalyptus
treats each RunInstances request (including each retry) as a
new and separate allocation request rather than as a retry of
a previous request. Hence each user re-request is an added
opportunity for creation orphans. Thus, at high loss rates,
creation orphans quickly (in the first 100 hours) exhaust
nearly all of the cloud’s resources, leaving few opportunities
for termination orphans to occur.

To design appropriate orphan control strategies, it is
important to determine the extent to which both creation
orphan control and persistent termination are needed. To
answer this question, we conducted trials in which only one
of the two orphan control methods was active (graphs
omitted). With only persistent termination active, a total
system performance collapse occurs that is similar to what
appears in Fig. 3(a). When only creation orphan control is
active, the performance decline is partial, but still crippling
(48.1 % of all users are not served at the highest loss rate).
In this latter case, over time, accumulation of termination
orphans leads to significant VM leakage.

Hence, we conclude that both creation orphan control and
persistent termination are needed. Otherwise, unless an
administrator finds and removes orphans, the cloud moves
toward a frozen state, where all VMs are orphans, and so
incoming user requests cannot be satisfied. We leave it to

the reader to speculate the difficulties involved in perusing
system logs throughout thousands of nodes in a cloud and
manually finding and removing termination orphans.
Further, in the absence of usage billing, there appears to be
no obvious manual process to discover creation orphans.
Even with usage billing, creation orphans cannot be
identified until users raise objections after receiving their
bill for VMs of which they were unaware.

Figure 4. User requests received by cloud controller and NERA responses
as the message loss rate increases, with (blue) and without (red) creation
orphan control and persistent termination.

To further understand the impact on system performance,

we observed the number of user RunInstances requests
received by the cloud and the number of NERA responses,
as message loss rate increased. Our analysis supports the
conclusions reached above. Figure 4 shows that without
orphan control, at the highest loss rate, a threefold increase
occurs in the number of requests, nearly all of which result
in NERAs. This reflects the cloud controller’s inability to
find a cluster to accommodate incoming requests, as cluster
resources are almost fully exhausted by orphans. The rise in
the number of requests reflects the resultant thrashing
caused by user retries. With creation orphan control and
persistent termination active, Fig. 4 shows that increasing
loss rate leads to only a modest rise in requests, most of
which are granted. Elsewhere [27], we provide additional
analysis at the cluster level, which supports these findings.
 Finally, we counted the total number of messages sent
across all layers in the cloud system as the message loss rate
increases. Without orphan control, the overall number of
messages increased from about 2.6E+07 at the lowest loss
rate to about 6.4E+07 at the highest rate. This reflects
increased effort expended as users retry requests, causing
the cloud to make failed allocation attempts, as VM leakage
drains needed resources. With orphan control, the overall
number of messages increased only to 4.5E+07 at the
highest loss rate, with only about 0.44 % of these messages
related to orphan control.

VII. CONCLUSIONS
We addressed the potential problem of resource leakage

in cloud systems and introduced the concepts of VM

0.0E+00

1.0E+05

2.0E+05

3.0E+05

4.0E+05

5.0E+05

6.0E+05

7.0E+05

8.0E+05

Nu
m
be

r�o
f�R

eq
ue

st
s

Probability�of�Message�Loss

Requests�Received�by�Cloud�(without)
Cloud�NERA�Responses�(without)
Requests�Received�by�Cloud�(with)
Cloud�NERA�Responses�(with)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Pr
op

or
tio

n�
of
�R
eq

ue
st
s

Probability�of�Message�Loss

Total�Grants
Full�Grants
Partial�Grants
Requests�Abandoned

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pr
op

or
tio

n�
of
�R
eq

ue
st
s

Probability�of�Message�Loss

Total�Grants
Full�Grants
Partial�Grants
Requests�Abandoned

558

leakage and orphan VMs. We demonstrated that VM
leakage is a potentially serious vulnerability that can lead to
resource exhaustion in clouds. Using a scenario, in which a
Trojan attack introduces malicious code modifications into
one part of an open-source cloud implementation, we
showed how this vulnerability can be exploited to cause
serious performance degradations in a simulated cloud
system. To remedy this problem, we also provided examples
of orphan control processes that could be used to detect and
eliminate orphaned VMs. Our experiment results show that
adding orphan control methods allows an open-source cloud
to sustain a higher level of resource availability during
malicious attacks. Our work has illustrated that VM leakage
is a potential problem that must be considered in the design
of cloud systems, if these systems are to be reliable. The
results of our experiments indicate that the scale of the
problem precludes manual discovery and removal of VM
orphans by system administrators—and that automated
means are needed. In the future, it will be necessary to
investigate other orphan control methods and to evaluate
their performance and accuracy. It will also be desirable to
extend this work to obtain a more general understanding the
potential for VM leakage in different kinds of cloud systems
operating under a wide range of conditions.

REFERENCES
[1] D. L. Heine and M. S. Lam, “A practical flow-sensitive and

context-sensitive C and C++ memory leak detector”,
SIGPLAN Not., Vol. 38, No. 5, May 2003, pp. 168-181.

[2] G. Xu, and A. Rountev, “Precise memory leak detection for
java software using container profiling,” Proceedings of the
30th international conference on Software engineering
(ICSE '08). New York, NY, USA, 2008, pp. 151-160.

[3] M Jump, and K. S. McKinley, “Cork: dynamic memory leak
detection for garbage-collected languages,” Proceedings of
the 34th annual ACM SIGPLAN-SIGACT symposium on
Principles of programming languages (POPL '07), 2007,
New York, NY, USA, pp. 31-38.

[4] K. Vaidyanathan, and K. S. Trivedi, “An Approach for
Estimation of Software Aging in a Web Server”,
Proceedings of the 2002 International Symposium on
Empirical Software Engineering (ISESE’02), 2002.

[5] S. Bagchi, Y. Liu, K. Whisnant, Z. Kalbarczyk, R. Iyer, Y.
Levendel, and L. Votta, A Framework for database audit
and control flow checking for a wireless telephone network
controller. International Conference on Dependable Systems
and Networks, Goteborg Sweden, July 2001, pp. 225 – 234.

[6] J. Antunes, F. Neves, and P.Verissimo, “Detection and
Prediction of Resource-Exhaustion Vulnerabilities”,
Proceedings of the 19th International Symposium on
Software Reliability Engineering, 2008, pp. 87-96.

[7] M. Arnold, M. Vechev, and E. Yahav, “QVM: an efficient
runtime for detecting defects in deployed systems”,
SIGPLAN Not. Vol. 43, No. 10, October 2008, pp. 143-162.

[8] S. Pertet and P. Narasimhan Causes of Failure in Web
Applications, CMU-PDL-05-109, Carnegie-Mellon
University, December 2005.

[9] J. Lemon, “Resisting SYN flood DoS attacks with a SYN
cache”, Proceedings of the BSDCon '02 Conference on File

and Storage Technologies, February 11-14, 2002, San
Francisco, California, USA.

[10] D. Nurmi, et al., “The Eucalyptus Open-Source Cloud-
Computing System”, Proceedings of the 9th IEEE/ACM
International Symposium on Cluster Computing and the
Grid, May 18-21, 2009, pp. 124-131.

[11] Rupley, S, “11 Top Resources for Open-source Cloud
Computing”, GIGACOM, November 6, 2009, http://
gigaom.com/2009/11/06/10-top-open-source-resources-for-
cloud-computing/

[12] Hinkle, M., “Eleven Open-Source Cloud Computing
Projects to Watch”, SocializedSoftare.com, January 10,
2010, http://socializedsoftware.com/2010/01/20/eleven-
open-source-cloud-computing-projects-to-watch/

[13] OpenStack Cloud Software, http://www.openstack.org/,
Accessed August 1, 2011.

[14] Higgenbotham, S, “VMware Launches Open-Source Cloud”,
GIGACOM, April 12, 2011, http://gigaom.com/cloud/
vmware-open-source-cloud/

[15] E. Levy, “Poisoning the software supply chain”, IEEE
Security & Privacy, 1(3), 2003, 70-73.

[16] D. A. Wheeler, Secure Programming for Linux and Unix
HOWTO, http://www.dwheeler.com/secure-
programs/Secure-Programs-HOWTO/open-source-
security.html, accessed on Aug. 18, 2011.

[17] IT World Canada Staff, Trojan Horse Attacks GNU Project, PC
World, Aug. 18, 2003.
http://www.pcworld.com/article/112071/trojan_horse_attack
s_gnu_project.html

[18] Staff, Attacker attempts to plant Trojan in Linux, ZDNet
UK, Nov. 7, 2003. http://www.zdnet.co.uk/news/application-
development/2003/11/07/attacker-attempts-to-plant-trojan-
in-linux-39117696/

[19] R. Singel, Firefox Infects Vietnamese Users With Trojan Code,
WIRED, May 7, 2008.
http://www.wired.com/threatlevel/2008/05/firefox-infects/

[20] T. Forenski, Open-source hacks - sneaky Skype Trojan code
released, ZDNet, August 27, 2009.
http://www.zdnet.com/blog/foremski/open-source-hacks-
sneaky-skype-trojan-code-released/736

[21] K. J. Higgins, Open-Source Project Server Hacked, Software
Rigged With Backdoor Trojan, Dark Reading, Dec. 2, 2010.
http://www.darkreading.com/authentication/167901072/secu
rity/application-security/228500217/open-source-project-
server-hacked-software-rigged-with-backdoor-trojan.html

[22] K. Mills, J. Filliben and C. Dabrowski, "An Efficient
Sensitivity Analysis Method for Large Cloud Simulations",
Proceedings of the 4th International Cloud Computing
Conference, IEEE, Washington, D.C., July 5-9, 2011.

[23] Amazon Elastic Compute Cloud (Amazon EC2)
http://aws.amazon.com/ec2/, 2010.

[24] Amazon Elastic Compute Cloud API Reference API Version
2009-08-15.

[25] Amazon EC2 Instance Types http://aws.amazon.com/ec2/
instance-types/, 2010.

[26] F. Curbera, et al. “Unraveling the Web services web: an
introduction to SOAP, WSDL, and UDDI”, Internet
Computing, IEEE, March/April, 2002, pp. 86-93.

[27] C. Dabrowski and K. Mills, "Extended Version of VM
Leakage and Orphan Control in Open-Source Clouds", NIST
Publication 909325.

[28] K. Mills, J. Filliben and C. Dabrowski, “Comparing VM-
Placement Algorithms for On-Demand Clouds”,
Proceedings of IEEE CloudCom 2011, Nov. 29-Dec. 1,
2011, Athens.

559

