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Evidence Interpretation

I The forensic source identification – inferential analysis to
identify the origin of a collection of forensic evidence

I Summarization of the observed evidence relative to the
prosecution and defense propositions

I Forensic scientists: interested in source level propositions,
sometimes activity level propositions

I Court system: offense level propositions concerning the guilt
or innocence of the defendant
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Sources

Three subsets of objects:

es : Set of objects associated with a specified source
(person, window, ...)

eu: A set of trace objects from an unknown source

ea: Collection of sets of objects from alternative sources
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Propositions and Sources

Hp: Same source

Specific source: 
es (ns traces)

Alternative 
sources: 

ea (na sources)

Hd: Different 
sources

M1: Sample from 
one specific 

source
M2: Sample from 

na +1 sources

Unknown source: 
eu (nu traces)
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Approaches for Summarizing the Evidence

I Bayesian methods (Lindley, 1977) – trace evidence

I Two-stage approach (Parker, 1966) – trace evidence

I Score-based methods (Royall,1997) – pattern and trace
evidence
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Two-stage Approach

Stage One:
Exclusion Stage

Exclusion Different sources
T(eu,es)<!

T(eu,es)≥! Stage Two:
Atypicality StageNon-exclusion
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Likelihood Ratio

I Error rates
I Exclusion: random non-match probability (RNMP), or chance

of incorrect non-match
I Non-exclusion (or inclusion): random match probability

(RMP), or chance of incorrect match

I Likelihood ratio (LR) based on binary decision of T (es , eu) >
a threshold, τ:

LR =
Pr(T (es , eu) > τ|Hp)

Pr(T (es , eu) > τ|Hd)
=

1− RNMP(τ)

RMP(τ)

I Similar to diagnostic LR: accuracy of a diagnostic test which
has positive and negative results

I Well-studied positive LR in diagnostic medicine:
sensitivity/(1-specificity)
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Forensic Error Rates

I Similarity scores for the i th within-source comparison:
Ts,i , i = 1, . . . ,m follows Fθs

I Similarity scores for the j th between-source comparison:
Td ,j , j = 1, . . . , n, follows Fθd

I Random non-match probability:

RNMP(τ) = P(Ts,i ≤ τ) = Fθs (τ)

I Random match probability:

RMP(τ) = P(Ta,j > τ) = 1− Fθd (τ)
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ROC Curves for Forensic Error Rates

I ROC curve plots (1-RNMP) versus the RMP as the threshold
point τ for determining a “match” varies from −∞ to +∞.

I Let t be RMP(τ), and R(t) is 1− RNMP(1− t)

I ROC curve R(t):

R(t) = 1− Fθs (F
−1
θd

(1− t))

I The derivative of the ROC curve closely related to likelihood
ratio: the instantaneous change in the 1-RNMP in a unit
change of RMP
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Relationship between ROC and LR

An illustration of the relationship between ROC and LR:
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Figure: Left panel: dash curve – different-source scores, solid curve –
same-source scores; right panel: solid black curve – ROC curve
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Smooth ROC curve – Parametric Method

I Assume after Box-Cox power transformation, Fθs ∼ N(µs , σ
2
s )

and Fθd ∼ N(µd , σ
2
d)

I RNMP and RMP:

RNMP(τ) = Φ(
µs − τ

σs
), 1− RMP(τ) = Φ(

µd − τ

σd
)

I The resulting binormal ROC curve :

R(t) = Φ(
µs − µd
σs

+
σs
σp

Φ−1(t))

I Explicit expression for LR estimate and its confidence interval
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NIST SD4 Data

I NIST Special Database 4 (SD4)

I SD4 database contains 512-by-512-pixels gray scale fingerprint
images

I Two representations for each finger – rolled impressions of the
finger

I Bozorth matcher was run on all pairs of fingerprints from SD4
database
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Histograms of NIST SD4 Data
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Confidence Intervals of Log(LR) for SD4
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Figure: PE – parametric, KDE – kernel density estimation; LRE – logistic
regression estimation (Zhu, Tang, Tabassi, 2017 IJCB)
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Likelihood Ratios for Facial Recognition

I The Good, the Bad, and the Ugly Face Challenge Problem
(Phillips, et al, 2012)

I Frontal face images taken with a digital single-lense reflex
camera

I The data set has three categories, which are “good”, “bad”,
and “ugly”, based on the quality of the images

I The comparison scores measures characteristic difference
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Confidence Intervals of Log(LR) for Facial Recognition
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Conclusion and Future Work

I Sampling variability of likelihood ratio for fingerprint and
facial recognition data

I Paradigm for the reasoning about the source of traces based
on error rates

I Characterize the uncertainty about estimated forensic error
rates
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