3D Fingerprint Targets

Sunpreet S. Arora¹, Kai Cao¹, Anil K. Jain¹ and Nicholas G. Paulter Jr.²

¹Michigan State University ²National Institute of Standards and Technology

This research is supported by a grant from the NIST Measurement Science Program

3D Fingerprint Target

2D fingerprint image

3D finger surface

Goal

 Build 3D targets to evaluate image acquisition capability of fingerprint readers

Benefits

Standards organizations: develop standard procedures to benchmark fingerprint readers

 Fingerprint vendors: improve performance of fingerprint readers

 End users: understand and compare the sources of limitations in different fingerprint readers

Our Contributions

Synthesize 3D targets by projecting 2D calibration patterns onto 3D finger surface

 Fabricate targets with material(s) similar in hardness and elasticity to the human finger skin using a state-of-the-art 3D printer

 Demonstrate utility of the targets for evaluation of fingerprint readers

3D Target Synthesis **Preprocessing** 3D finger surface **3D finger surface Postprocessing 3D finger Mapping 2D** surface fingerprint to 3D surface **Engraving 2D** calibration pattern **Preprocessing** on 3D surface 2D calibration pattern **3D printing** 2D calibration pattern

Preprocessing 3D Finger Surface

Align the surface

Sample vertices and triangles

Make the surface dense

Separate front and back

Preprocessing 2D Calibration Pattern

2D calibration pattern

Mapping 2D Pattern to 3D Surface

Unwrap to 2D

Make the surface dense

Map the 2D pattern

Frontal finger surface

Engraving 2D Pattern on 3D

Compute the surface normals

Displace the surface along the normals

Frontal finger surface

Postprocessing 3D Finger Surface

Combine front and back

Inner finger surface

Stitch outer and inner surfaces

3D Printing

Electronic 3D target

Stratasys Objet Connex 350 (X & Y res: 600 dpi,

Z res: 1600 dpi)

Physical 3D target

Experiments

- How good is the synthesized and fabricated 3D target?
 - Fidelity of features after projection from 2D to 3D
 - Fidelity of engraved features after 3D printing
 - End-to-end fidelity of features
- Are the different impressions of a 3D target consistent (intra-class variability)?
- Evaluating fingerprint readers using 3D targets

Fidelity of 3D Target Synthesis

Fidelity of features after 2D to 3D projection

Similarity Score = 179; Threshold @0.01% FAR = 33

Fidelity of 3D Target Synthesis

Fidelity of engraved features after 3D printing

Fidelity of 3D Target Synthesis

End-to-end fidelity of features

Intra-class Variability between 3D Target Impressions

Similarity Score = 1397; Threshold @0.01% FAR = 33

 Project 2D calibration patterns (sine gratings/ fingerprints) of known spacing

Sinagerating

Average special poxes pixels

3D Target

Capture impressions of the 3D targets

Optical Reader 1 (500 ppi) **Optical** Reader 2 (1000 ppi) 19 **Fingerprint Horizontal grating Vertical grating Circular grating**

 Measurements from 10 captured images of 3D targets synthesized using sine gratings

Test pattern	Optical Reader 1 (500 ppi)	Optical Reader 2 (1000 ppi)
Horizontal grating	$\mu = 9.04$, $\sigma = 0.06$	$\mu = 9.05$, $\sigma = 0.05$
Vertical grating	$\mu = 9.51$, $\sigma = 0.23$	$\mu = 9.46$, $\sigma = 0.09$
Circular grating	μ = 9.80, σ = 0.31	$\mu = 9.59$, $\sigma = 0.08$

Mean (μ) and Std. deviation (σ) of spacing computed in the captured images of targets using the two readers (pattern spacing = 10 pixels)

Note:

• To compensate for the distortion induced during 2D to 3D projection of the 2D pattern, ratio of the Euclidean to Geodesic distance (0.94) is factored into spacing computations

Measurements from 5 captured images of 3D targets synthesized using fingerprints

Test pattern	Optical Reader 1 (500 ppi)	Optical Reader 2 (1000 ppi)
S0005 (9.45)	μ = 8.93, σ = 0.12	$\mu = 8.59$, $\sigma = 0.09$
S0010 (10.20)	$\mu = 10.10$, $\sigma = 0.04$	$\mu = 9.65$, $\sigma = 0.12$
S0017 (10.80)	μ = 10.85, σ = 0.13	μ = 10.20, σ = 0.08
S0083 (10.42)	μ = 9.92, σ = 0.23	$\mu = 9.55$, $\sigma = 0.03$
S0096 (10.25)	$\mu = 9.56$, $\sigma = 0.08$	μ = 9.25, σ = 0.02

Mean (μ) and Std. deviation (σ) of spacing computed in the captured images of targets using the two readers (average pattern spacing indicated in brackets)

iPhone 5s: Enrolment and Verification

Conclusions and Ongoing Work

- Devised a method to create 3D targets by (i)
 projecting a 2D calibration pattern onto a generic 3D
 finger surface, and (ii) fabricating using a 3D printer
- Demonstrated fidelity of the 3D target synthesis and fabrication process
- Showed the utility of the fabricated 3D targets for evaluating optical fingerprint readers
- Ongoing Work: Investigating alternative methods to fabricate the 3D targets with higher precision, and using materials with similar optical properties and conductivity to the human finger skin