工業技術研究院

Industrial Technology Research Institute

3D Pitot Tube Measurements and Calibration in the Wind Tunnel

Center for Measurement Standards Industrial Technology Research Institute Taiwan, R.O.C.

Hsin-Hung (Kyle) Lee

April 20, 2015

About ITRI - Founded in 1973

- Total Staff : 5,782 ● Ph.D. : 1,295
- Total Patents : 16,732 :171
- Start-Ups

About ITRI

- A not-for-profit non-government R&D organization
 - To create economic value through innovation and technology R&D
 - To spearhead the development of emerging new industry
 - To enhance the competitiveness of Taiwanese industries in the global market

Contents

- Introduction
- Technology Needed for Smokestack Flow Measurements
- Characterization of Pitot Tubes
- Calibration Facilities
- Calibration Data Analysis
- Future Work

Beauty and Sadness of Taiwan

Introduction

Where on earth are you most likely to die early from air pollution?

Stationary Source Emissions

in air quality terminology is any fixed emitter of air pollutants, such as fossil fuel burning power plants, petroleum refineries, petrochemical plants, food processing plants and other heavy industrial sources

Technology Needed for Smokestack Flow Measurements

Touch panel manufacturers Waste incineration plants Semiconductor manufacturers

Technical challenges

- Swirl and inhomogeneous flow
- Complicated compositions
- Location of measurements
- Calibration of instruments

Characterization of Pitot Tubes - Introduction

EPA Methods 2F, 2G, and 2H (40 CFR Part 60, Appendices A-1 and A-2)

- Method 2 is fine for situations where there is a straight forward flow profile, however it is prone to bias if cyclonic flow and wall effects are ignored
- Method 2G is used for accurate velocity and volumetric flow rate measurements when stack gas has significant yaw angle; it may be conducted using either a Type S or 3-D probe

 Method 2F is used for accurate measurements when stack gas has significant yaw and pitch angle; it must be conducted using a threedimensional (3-D) DAT or spherical probe

 Method 2H (or CTM-041 for rectangular ducts) is used for accurate measurements by accounting for velocity drop-off near the stack or duct wall

- Flow visualization of pitot probes by CFD

Characterization of Pitot Tubes - Design of 3D pitot tubes

Geometry and Construction		Measurement Accuracy (w/Aeroprobe	
Probe	Straight L-Shaped	Flow Angles	< 1º
Geometry	ocraight, 2 onaped	now Angree	
Number of	12	Total Flow	< 1%*
Holes		Velocity	
Tip Geometry	Spherical	Required	Reference Pressure, Total
-		Auxiliary	Temperature
		Data**	
Tip Diameter	6.35 mm, 9.53 mm	Flow Angle of	120°
		Receptivity	
Material	All-Stainless Steel	Calibration	5 m/s to 315 m/s (Mach =
	Construction	Flow Speeds	1.0)
Pneumatic	Tygon R3603	Pressure Data	Omnipro Software
Connection	Formulation, 1/32" ID,	Reduction	
	3/32" OD Standard for	Frequency	Low, Best for Determining
	Exit Tubing of 0.89 mm –	Response	Time-Averaged Flows
	1.6 mm (0.035" – 0.063")		
	OD.		
Mounting	Hex Prism (standard)	Media	Non-Reactive Gases
Probe	Flat on Hex Mount with	*Utilizing 0.1% Accurate Pressure Sensors	
Reference	"R"	Properly Rated for Flow Speed	
Flow Temp.	0°C – 150°C	**For Most Accurate Compressible P-V	
Limits		Reduction	

- Calibration system construction at CMS

- Pressure measurements and calibration

Piston-type Pressure Calibrator

Copyright 2014 ITRI 工業技術研究院

- Turbulence generation

研究院

- Traverse stage

- Angle measurements

Copyright 2014 ITRI 工業技術研究院

Calibration Data Analysis

- Definition of pressure coefficients

Input:

$$B_{\alpha} = \frac{p_4 - p_5}{Q'}, \quad B_{\delta} = \frac{p_1 - p_3}{Q'}$$

where

$$Q' = p_2 - 0.25 \times (p_1 + p_3 + p_4 + p_5).$$

Output:

$$\alpha, \delta, A_t = \frac{p_2 - p_t}{Q'}, \quad A_s = \frac{p_2 - p_s}{Q'}.$$

Calibration Data Analysis

- Nulling method

Step 1: Align the probe so that the center hole is pointing towards a reference position.

Step 2: Rotate probe until P2=P3. This is the Yaw angle.

Step 3: Calculate Pitch Angle Pressure Coefficient [(P4-P5)/(P1-P2)].

Step 4: Determine Pitch Angle.

Step 5: Determine Velocity Pressure Coefficient [(Pt-Ps)/(P1-P2)].

Step 6: Calculate Velocity pressure (Pt-Ps).

Step 7: Determine Total Pressure Coefficient [(P1-Pt)/(Pt-Ps)].

Step 8: Calculate (P1-Pt) and obtain Pt.

Copyright 2015 ITRI 工業技術研究院

Pitch angle vs. Pitch angle pressure coefficient

Pitch angle vs. Velocity pressure coefficient

Pitch angle vs. Total pressure coefficient

Future Work

Pitot tube characterization

- Characterization of yaw and pitch angle for different types of 3D pitot tubes
- Flow visualization by CFD and PIV

Calibration of 3D Pitot Tubes and Flow Measurements of Smokestack Emissions

Standard traceability

 Integration of wind tunnel and traverse stage for 3D pitot tube calibration

Calibration method and facility establishment

 Comparison of calibration methods (nulling and non-nulling method)

Uncertainty evaluation

 Evaluation of uncertainty evaluation and calibration procedure

Thanks for Your Listening & Let's Work Together for a Better World