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Summary 
 
The sequencing of the human genome, subsequent analyses of human genetic variation, and studies that 
associate gene variants with disease markers or other phenotypic alterations provides the knowledge for 
personalizing medical practice. Similarly, nutritional genomics – the study of gene and nutrient 
interactions [50, 52] – seeks information and knowledge for designing optimal diets that allow individuals 
to maintain health and prevent diseases.  The goal of personalized nutrition and medicine, which form the 
basis of personalized healthcare, is to get the right nutrient or therapeutic to the right individual at the right 
time for the right outcome. In addition to the interest within the research community, the political 
establishment has also recognized the importance and need for improving healthcare:  both the U.S. 
Senate and U.S. House are considering bills to expand and accelerate genomic research for improving 
diagnosis, increasing safety of drugs, and identifying novel treatments (S976 and H.R. 6498).   
 
While the potential benefits of personalized healthcare are significant for individuals, public health, and 
the economy, research and applications face significant challenges: the genetic heterogeneity of humans, 
the complexity of foods, and the variable physiological mechanisms that produce health or disease states 
[48, 49]. A subtle but more important challenge is the nature of current biomedical research studies: 
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association studies, whether genetic, nutritional, or nutrigenomic, are based on population studies that 
yield the attributable fraction (AF) - “the proportional reduction in average disease risk over a specified 
time interval that would be achieved by eliminating the exposure of interest from the population” while 
other factors remain unchanged [93]. For genetic association studies, the population attributable factor is 
that proportion of cases in the population that would be avoided if nobody carried the risk allele [34]. AF is 
often misinterpreted as a risk factor [93] rather than the fractional change in number of cases within the 
population. Perhaps most importantly, the attributable fraction is usually calculated from population 
models and is not directly applicable to individuals [116] because individuals may differ genetically, 
physiologically, and nutritionally from the population averages.   
 
Novel research strategies and experimental designs are necessary for creating individual nutritional 
recommendations or personalized healthcare. In order to be equitable, personalized healthcare research 
programs must include individuals from all socioeconomic groups and geographic regions. The complex 
nature of genotype – environment interactions that maintain health or produce disease require a 
multidisciplinary effort on the scale of the human genome and haplotype map projects. 
 
The problems 

 
Health and disease result from a complex interaction between an individual’s genetic makeup and the 
influence of environmental factors.  However, many experimental designs focus solely on genetic factors 
or environmental factors that influence onset or progression of disease.  In statistical terms, genetic and 
nutritional epidemiology experiments are typically designed to test for the statistical main effect of genes 
or nutrients (respectively) on some health or disease phenotype.  While some genes must be regulated in 
the absence of environmental factors to make a human a human, a significant proportion of an 
organism’s genes must respond to environmental factors, the most important of which are nutrients, or 
the organism will die.  This statement simply reiterates Darwin’s main hypothesis.  Since all organisms, 
including humans, adapt to their local environments and may be selected over generations, it also holds 
that optimum diets for one individual will not be optimal for every individual. In statistical parlance, the 
main effect is the genotype – environment interaction, not just the genotype and not just the environment. 
 
Although nutritional genomics and the related field of pharmacogenomics implicitly and explicitly accept 
these facts, experimental designs only recently have accounted for genetic and environmental variables.  
More importantly, research designs rely almost exclusively on determining the average response of a 
group or population.   
 
Genetic studies. Variations (e.g., single nucleotide polymorphisms, copy number) in one or more genes 
are analyzed and those that are associated more frequently in cases than controls may contribute to the 
tested phenotype.  Early association studies were criticized because they could not be replicated, did not 
appropriately match cases to controls, and were underpowered – that is, the sample size was small (e.g., 
[9, 36, 39, 65, 79, 92, 106]). More recently, genome wide association studies  (GWAS) attempted to 
address those limitations by increasing the number of cases: in some experiments, DNA and physiology 
in more than 20,000 individuals were analyzed (e.g., [53]).  Although novel genetic loci that contribute to 
disease were found, the new candidate genes identified collectively “explain” less than 10% of the 
population attributable fraction (PAF) for the phenotype tested (e.g., [53, 97]. Several limitations 
contributed to the number of genes identified and their small PAF.  The various GWA studies used 
different criteria for including individuals in the case population. In some of the experimental designs, 
cases included newly diagnosed (not yet on medications) as well as those on some type of medication.  
Combining all the cases regardless of disease subtype, age, environment, reduced (or averaged) the 
contributions of causative genes in different pathways. In addition, regardless of matching the overall 
genomic architecture of individual cases to individual controls, epistatic interactions may still occur in 
seemingly homogeneous populations [8, 101] because distinct chromosomal regions (and not average 
total genomic structure) may differ among cases, among controls, and between cases and controls.  New 
mapping strategies that are designed specifically for analyzing epistasis in association studies may 
provide a means to account for confounding gene – gene interactions (e.g., [12, 73, 111]).  
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Nutritional epidemiology.  Nutrients consumed more frequently or in larger amounts in cases versus 
controls may contribute to the development of a measured phenotype.  Nutritional epidemiology provides 
the most important information for developing food intake recommendations that are codified in the U.S. 
food pyramid (http://www.mypyramid.gov).  The fundamental thesis of these recommendations is that all 
individuals will metabolize and respond similarly to the same nutrients.  Although the new pyramid guide 
incorporated age and physical activity differences to determine diet, the recommendations did not 
address how individual genetic differences alters nutrient requirements, mainly because data for such 
recommendations is not available. Experimental evidence now exists that different environments exerted 
selective pressure on humans in different parts of the world. Published HapMap data analyzed by a novel 
algorithm identified chromosomal regions with a high Fst (Fixation index, a measure of population 
differentiation) between three ancestral populations (European, Chinese and African) [74]. These regions 
encoded genes involved in carbohydrate metabolism, skeletal development, and pigmentation. Such 
genetic differences may explain, for example, the differential effect in incidence of obesity and type 2 
diabetes between European-Americans and Pima Indians in the similar physical and food environments 
[98].  However, other research has demonstrated that certain gene – diet interactions are not related to 
strictly to ancestral background.  Individuals whose ancestors were exposed to either high starch or low 
starch environments differed in the number of amylase genes [82, 87]. Different populations (e.g., 
members of different tribes) in the same geographical region (e.g., central Africa) had different numbers 
of amylase genes. Differences in metabolism will also occur within an ancestral population as well as 
between populations. Genetic differences also have been shown to alter the requirements of 
micronutrients.  For example, 14 nonsynonymous changes including 11 alleles with frequencies <1% 
along with the common alleles p.A222V, p.E429A, and p.R594Q were identified by resequencing the 
methylene tetrahydrofolate reductase gene [68] from 564 individuals of diverse genetic ancestry (Coriell 
Institute panels - http://ccr.coriell.org/Sections/BrowseCatalog/Populations.aspx?PgId=4). Increased 
levels of folate restored MTHFR activity to the normal range in 4 of the 5 biochemical enzyme variants. 
The sequence heterogeneity and remediation of enzyme activity by folate supports a greater emphasis on 
the ~600 cofactor dependent enzymes in the human proteome. Since many cofactors are derived from 
diet, such studies may identify individuals who require higher concentrations of vitamins for optimal 
health.  
  

The specific problems 
 

1. Genetic variation and environmental exposures, and specifically nutrient intakes and physical 
activity, must be analyzed in the same experiment to generate a more complete description of the 
human system.  These requirements are challenging because: 

 
a. Nutritional and physical activity assessment tools are difficult to use with accuracy and 

only a few are web-enabled  
b. Nutritional and physical activity databases are usually, if not always, laboratory based 

and inaccessible to other collaborators 
c. Genetic variation of populations has not been well studied although efforts are underway 

to increase representation of other ancestral populations. 
 

2. New research strategies are needed that are based on individual responses and not the average 
response of a group or population. 

 
3. The complexity of genotype – environment interactions requires a multidisciplinary collaborative 

effort on the scale of the human genome and haplotype map projects. 
 
The challenges 
 
Challenge 1: Human Genetic Diversity.  The human genome project and haplotype diversity projects 
have identified over ~10 million single nucleotide polymorphisms in individuals from Yoruba in Ibadan, 
Nigeria, Japanese in Tokyo, Japan,  Han Chinese in Beijing, China, and Utah residents with ancestry 
from northern and western Europe (http://www.hapmap.org/).  The haplotype data showed that Africans 
have the greatest genetic variation while Asians have the least genetic diversity [35, 43].  Although 10 – 
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15% of genetic variation is unique to a given ancestral group, the distribution of these polymorphisms in 
genes involved in nutrient metabolism, regulation, or responsiveness to drugs has not been analyzed for 
most genes (see above and [74]).  On a population level, the average efficacy and toxicity of certain 
drugs vary between different ancestral groups [7, 95, 119] indicating that individual differences will be 
important for proper treatment.  Similarly nutrient – gene interactions may differ among individuals from 
different ethnic populations. Lactase persistence which allows individuals to consume lactose as adults is 
a prime example of a nutrient – gene interaction [50].  Lactase persistence in Europeans resulted from a 
C-13910T SNP polymorphism in promoter of the lactase phlorizin hydrolase gene (LCH) that arose as a 
mutation around 9,000 years ago [26].  This polymorphism is thought to alter regulatory protein - DNA 
interactions controlling expression of the gene [37]. Certain groups in Africa also exhibit lactase 
persistence even though the African and European populations have been separated for at least ~35,000 
years.  Sequence analyses showed that many lactose tolerant individuals in these populations have a G-
14010C polymorphism 5’ to the LCH gene that arose about ~7000 years ago [110].  The maintenance of 
the independently derived European and African variants conferred selective advantages that include 
improved nutrition, prevention of dehydration, and improved calcium absorption in environments that are 
nutrient poor [110].  Comprehensive studies analyzing macronutrients or micronutrients requirements for 
optimal health in different genetic groups have not been done.  Geographic separation and evolution, 
epistatic (gene – gene interactions [12]), and epigenetic (reversible, heritable, but nongenetic) changes in 
gene regulation [15]) mechanisms alter nutrient utilization and susceptibility to complex diseases.   
 
Epistatic interactions occur because proteins and enzymes are in linear or networked pathways which 
share metabolites or by direct physical interactions. The activity of an allele metabolizing a drug or 
nutrient may be influenced by a variant of an interacting protein [12, 111].   Since the probability of 
inheriting gene variants depends upon the allele frequencies in the population, epistatic interactions may 
be most obvious when comparing effects of a gene variant in different ancestral populations [57] or in 
admixed populations [104].  One example of this effect was shown by the effect of the HapK haplotype in 
the leukotriene 4 hydrolase (LTH4A) on cardiovascular disease (CVD) and myocardial infarction (MI).  
African-Americans who carry the European derived - HapK haploptype have an increased risk (~5 fold) 
for CVD and MI than European–Americans (1.35 fold) with the same LTHA4 haplotype. The difference in 
risk can be explained by at least three possible mechanisms:  (i) LTH4A interacts differently with one or 
more gene variants in either African versus European chromosomal regions resulting in increased effect 
of LTH4 activity in African Americans, and/or (ii) different environmental factors alter the influence of 
LTH4A on myocardial infarction [31] or (iii) a combination of epistatic and gene – environment interactions 
[57].  LTH4A participates in leukotriene and prostaglandin metabolism which are linked to dietary fatty 
acid intake [54].  Thus, the effect of a given allele on a trait or disease must be considered in the context 
of the other genes in the individual and the environmental factors that may influence its expression and/or 
function.   
 
While epistasis may be most important for recently admixed populations (e.g., African Americans), 
genetic variation within a population such as European groups [8, 81, 101]} and Iceland [32] may also be 
affected by gene – gene interactions.  The consequences of epistatic interactions are that (i) larger 
sample sizes are needed for gene – nutrient, gene – disease, and gene – nutrient - phenotype studies, (ii) 
ancestral markers may be needed to assess genetic background of each individual in the study, (iii) the 
results of genetic association studies may be specific only to that population [13, 57, 104, 108, 113, 114, 
120] and (iv) genetic ancestry may alter the metabolism of dietary chemicals and drugs altering medical 
diagnosis and treatment options.  A corollary of these consequences is that for purely scientific reasons, it 
will not be possible to completely describe nutrient – gene interactions (or drug – gene interactions) and 
their outcomes on physiology without comparing responses in different ancestral groups.   
 
In addition to epistatic interactions, expression of genetic information can be altered by epigenetic 
mechanisms that change chromosome structure [22, 28, 41, 72].  Nutrients are involved in epigenetic 
mechanisms because certain dietary chemicals or their metabolites produce substrates for [15, 27] or 
otherwise alter [23] DNA methylation and the energy balance of a cell is connected to chromatin 
remodeling enzymes [88].  The study of these processes has spawned the field of nutritional epigenomics 
[29].   
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A growing body of evidence also suggests that nutrients may alter chromatin structure during 
developmental windows – key times during development where short term exposure to unbalanced 
environments or nutrients produce lasting changes to gene expression patterns (reviewed in  [29, 70]). 
Many, if not most, human studies (for drugs, genetic association, or other) assume similar if not identical 
developmental paths to adulthood.  However, genetic expression in individuals from impoverished 
environments, or in individuals who habitually consume nutritionally unbalanced diets, may differ 
significantly from the population average due to chromatin structure. Changing transcriptional regulation 
by chromatin remodeling may alter gene – phenotype or gene – nutrient – phenotype associations. 
Developing experimental approaches for dissecting the environmental influences and the critical genes 
and pathways will be essential and challenging. 
 
Challenge 2: Complexity of Gene – Nutrient Interactions.  A substantial percentage of dietary 
components can either directly or indirectly regulate cellular processes through metabolic pathways [50].  
Well documented examples include genistein and hyperforin [99].  Genistein, present in soybean 
products and other plants, binds to the ligand (estradiol) binding site of estrogen receptor [89].  The 
binding affinity of genistein is only ~0.01% that of estradiol for estrogen receptor alpha (ERα) but ~3% 
relative to estradiol for ERβ  [61].  Binding is physiologically relevant since this phytoestrogen activated 
transcription of estrogen regulated genes in uteri of rats [75].  Since ER subtypes [5, 61, 62] are 
distributed differently among organs, genistein is likely to produce specific effects on physiological 
processes in tissues where ERβ is expressed.   Genistein is also known to alter signal transduction 
pathways through AKT, FAK, ERBB2 and BCL2 [60].  The many targets and pleiotropic effects of 
genisten preclude a simplistic explanation of how this isoflavonoid will alter physiology differently in 
different genotypes. 
 
Dietary chemicals may also indirectly alter drug metabolism through the control of transcription or 
signaling pathways.  Hyperforin, the active ingredient of St. John’s wort, binds and activates the pregnane 
X receptor (PXR - [71, 90, 109, 117]).   PXR is the key transcriptional factor regulating expression of 
CYP3A4 [42] which metabolizes ~40% of prescription drugs.  Intake of St. John’s wort is likely to alter 
drug metabolism through changes in the level of CYP3A4 mRNA and protein. 
 
While these two compounds are examples of bioactives which directly affect expression of genetic 
information, numerous signaling and transcriptional activators are produced from dietary chemicals 
metabolized by intermediary metabolic pathways. For example, the peroxisome proliferator activated 
receptor gamma 2 (PPAR-γ), a target of thiazolidinediones (TZD – used for type 2 diabetes treatments), is 
activated by the dietary lipids linoleic, linolenic, arachidonic, and eicosapentaenoic acid [10, 80] and their 
metabolites.  In addition to their role as transcriptional activators, dietary lipids and their metabolites alter 
regulation of many diverse cellular processes.   
 
Challenge 3: Clinical Heterogeneity of Physiology.  All chronic diseases and many monogenic 
diseases are heterogeneous in underlying metabolism and clinical appearance.  Type 2 diabetes mellitus 
(T2DM) can be used as an example of this heterogeneticy.  The incidence and severity of T2DM is 
significantly associated with intake of excess calories, dietary fat, high glycemic index carbohydrates, and 
certain micronutrients [3, 4, 38, 77, 78].  The determination of optimum nutrient intakes to prevent, delay, 
or reduce the severity of the disease is complicated by the chemical complexity of food [44, 50].  T2DM 
begins at different ages and progresses differently among individual patients [103].  Rosenzweig defined 
a severity score for T2DM with 4 levels (low, moderate, high, and very high), each of which described the 
progression of 6 conditions: glycemic control (Hb1Ac, hypoglycemia, ketosis), cardiovascular risk factors, 
peripheral neuropathies, eye disease, renal disease, and autonomic neuropathies [94].  The classification 
scheme provides guidance for treatment strategies although individual patients have different responses 
to drugs and eventual disease outcome.  Management of T2DM can be a lengthy trial and error method, 
involving significant amounts of time and considerable expenses for the patient and the healthcare 
system.   
 
The initial recommendation and treatment for early stage cases of T2DM (level 1, glycemic control) 
provides an example of the varied responses to treatments among patients.  The ideal first option for 
early stage T2DM is to modify diet and lifestyle, which is successful in only ~20% of patients [59]. Patients 
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refractory to lifestyle changes, or who present with more severe indices of the disease, are treated with 
one or more of 6 classes of drugs).  These drugs target different pathways and organs: insulin secretion 
by the pancreas (sulfonylurea and meglitinides), glucose absorption by the intestines (α-glucosidase 
inhibitors), glucose production in the liver (biguanide = metformin), and insulin sensitivity in adipose and 
peripheral tissues (e.g., rosiglitazone and pioglitazone). A newly approved agonist of glucagon-like-
peptide 1, exenatide, stimulates insulin production  [64, 76] only when glucose levels are high 
(http://www.diabetes.org/type-2-diabetes/oral-medications.jsp). Approximately 50% of T2DM patients take 
oral medications only, about 11% take combinations of oral agents with insulin, and the remainder take 
no medications (20%) or insulin alone (16.4%) [59].  
 
Identifying the genes that cause abnormal responses in these molecular pathways would allow the 
development of diagnostic tests for sorting individuals into treatment groups.  However, knowledge of 
gene variants involved in absorption, distribution, metabolism, and excretion of drugs will be required to 
fully implement phramacogenomic testing [24, 40, 55, 56].  A further complication of pharmacogenomic, 
and eventually nutrigenomic testing, is that certain drugs or nutrients may affect not only a specific target, 
but other genes, proteins, or pathways [47].  The clinical heterogeneity at first diagnosis, responsiveness 
to treatments, differential toxicities of drugs in different individuals, and many different complications that 
arise as the disease progresses presents formidable challenges for designing phramacogenomic as well 
as nutrigenomic experiments to identify genes and environmental factors that cause chronic diseases.  
Studies of gene - environmental factor – chronic disease associations require more detailed phenotypic 
analyses, and the number of clinical and physiological variations within a population of T2DM patients 
makes that a challenging task [16, 17, 84].   
 
Challenge 4: Experimental Designs.  Biomedical research has made tremendous progress over the 
past 50 years using population based experimental designs.  However, population attributable risks can 
not be applied to individuals because each differs in genotype and environmental exposure from the 
“average” individual in a study population [45].  The challenge for nutrigenomics and biomedical research 
is to account for the diversity and to develop a path for creating personalized nutrition and healthcare. 
The key aspect of any new approach (e.g., [45]) for biomedical research is to (i) assess physiology more 
completely (i.e., deep phenotyping [112]), (ii) measure candidate genes and origin of chromosomal 
segments (e.g., [96]), (iii) assess response to changes in lifestyle either over time or acutely (e.g., 
homeostatic challenges [115]).  The Framingham Heart Study (http://www.framinghamheartstudy.org/) is 
one example of a study that allows for analyses of lifestyle, phenotype, and genetic makeup but has been 
acknowledged as being applicable to members of the ancestral population studied (essentially European-
Americans [33].  
 
Government support and a coherent multidisciplinary program 
 
Although much media, political, and scientific attention has been focused on healthcare costs, the failing 
discovery pipeline of pharmaceuticals, the growing obesity epidemic, and the unbalanced nutrient 
contents of manufactured foods, little attention has been given to the fundamental basis of scientific and 
biomedical research.  The U.S. scientific enterprise has produced many and varied successes over the 
past ~60 years of government investments.  From 1950 through 2005, the NIH received ~ $400 billion 
(not adjusted for inflation) to support research, the majority of which was for extramural projects in 
principal investigator - managed laboratories.  Approximately 80% of the 2008 budget of NIH supports 
50,000 competitive grants to more than 325,000 researchers at over 3,000 universities, medical schools, 
and other research institutions in every state and around the world (http://www.nih.gov/about/budget.htm).   
Funding independent projects is the lifeblood of the American research enterprise.  However, the result of 
these investments has contributed to over 18 million citations in the National Library of Medicine’s 
PubMed service (http://www.ncbi.nlm.nih.gov/sites/entrez) as the healthcare crisis grows and obesity and 
chronic diseases cost the American society almost $1 trillion per year 
(http://www.sehn.org/tccchronicillnesscosts.html).  The complex nature of biological systems requires a 
more systematic experimental paradigm involving multidisciplinary teams consisting of government, 
academic, and industry researchers: no one research group has the expertise or resources to analyze 
and interpret data from omic and lifestyle assessments.   
 

http://www.framinghamheartstudy.org/
http://www.nih.gov/about/budget.htm
http://www.ncbi.nlm.nih.gov/sites/entrez
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We propose a 10 year program totaling $TBD to develop the infrastructure, strategies, and data for 
understanding environment – genotype interactions that are the basis of health and disease processes.  
Failure to coordinate a comprehensive biomedical research plan risks producing more of the same:  small 
studies that are insufficiently powered focusing on an incomplete subset of the pathways or organs – the 
results of which do not provide information that completely describes the biological system, and produces 
little useful data to address the staggering healthcare crisis. 
 
Potential technical solutions 
 
The significant advances in understanding complex biological process relied on reductionistic 
approaches: hold all variables but one constant. While this strategy was successful for certain 
phenotypes, understanding complex systems requires analytical approaches that incorporate rather than 
avoid complexity. Genes interact with nutrients and nutrients alter genetic expression – analyzing one and 
ignoring the other results in incomplete analyses. The key challenge for personalizing health care then is 
not the complexity of the datasets, but acquiring those datasets in a manner to reduce noise and increase 
the true signals. This might best be accomplished by pre-selecting phenotypes based on quantitative 
data, or alternatively, pre-selecting genotypes that maximize differences in allele frequencies of candidate 
genes involved in nutrient metabolism or other physiological trait. The integrative whole-system analyses 
of the datasets and new visualization methods, such as shown with network analysis tools provide a path 
to not only perform these complex experiments, but also to develop biological insight into the outcomes. 
The development of nutrigenomics and genetics and the application of this knowledge will provide 
strategies for maintaining health and improving medical treatment of chronic diseases.  
 
Several approaches are possible to identify gene - environment interactions involved in health 
maintenance. 
 
1. Identifying “metabolic groups” based on similar genotype – environment interactions [45].  

This concept is intermediate between population based and individualized nutrient – gene 
interaction data. Specifically, current omic (genomic, transcriptomic, proteomic, and metabolomio) 
technologies can be used to identify and group individuals with common phenotypes and analyze 
the genetic differences between them.  Alternatively, individuals can be selected based on 
variations in genes (and not just variants used for genetic mapping) and phenotypes can be 
compared. The first groups tested would be those most different in phenotypes or genetic make-
ups – that is, to determine the widest range of variation within the human population. Instead of 
selecting subjects of one ancestral population (Europeans or Asians or Africans) who are either 
healthy or have disease, analyses should be done between genetic or metabolic groups that are 
predetermined. Members of each group would have like genotypes or metabolic phenotypes, but 
between group differences would be large. The key aspect of this concept is that membership in 
the group is based on some quantitative measure of phenotype or genotype. Once maximum 
differences of differing phenotypes or genotypes are determined, groups between the extremes 
can be determined. While it is expected that most biological traits are continuous with no discrete 
breaks in the phenotypic or genetic continuum, such “binning” is a standard for medical practice 
which uses clinical measurements to group individuals into treatment options and for statistics 
which rely on tertiles, quartiles, quintiles, etc, to determine structure within experimental data. The 
difference from these standard approaches is that the binning is done prior to physiological 
analyses if the genetic variation is predetermined or prior to genetic analyses if different 
phenotypes are identified rather than after experimental data are acquired.  

 
This comparative phenotype/comparative genotype concept is based on similar strategies used in 
laboratory animals studies: phenotypic differences among inbred strains (i.e., different genotypes) 
are utilized for genetic mapping [6, 58, 63, 111], but also for analyzing differences caused by 
gene – nutrient interactions [2, 6, 11, 14, 51, 85, 86, 102, 107]. We [48, 49] and others [67] 
proposed that patients be grouped based on clinical measurements (see clinical heterogeneity 
section above). A successful application of this idea was pre-selecting women with the phenotype 
of early onset (< 35 years of age) vs late onset of breast cancer that allowed the identification of 
17q21 [30] and subsequent identification of BRCA1 gene [105].  An international group of 



Strategies and Infrastructure for Personalized Healthcare - 8 

researchers from 22 countries are harmonizing a protocol to analyze gene – nutrient interactions 
in newly diagnosed diabetics.  Two workshops (Melbourne, Australia, May 2008 and Potsdam, 
Germany, September 2008) were held to discuss the challenges and solutions for this project. 

 
2. Homeostatic challenges.  The “healthy” state may be just as metabolically diverse among 

individuals as disease states. The challenge homeostasis model [25, 115] notes that an 
individual’s physiological response to an acute challenge, such as the oral glucose tolerance test 
(OGTT), may provide a means to sort individuals into metabolic groups and predict long term 
health outcomes.  While there are three existing “bins” for the OGTT (normal, impaired glucose 
tolerance, diabetic - [118]), additional groups could be identified by assessing other metabolic 
systems (e.g., amino acid level differences) which are altered by the glucose bolus. Such 
changes occur because amino acid metabolism is linked to glucose metabolism. Additional 
nutritional challenges for lipid intake, micronutrient response, or other nutritional variables may be 
developed and the various omic technologies now permit these more detailed analyses at ever-
reducing costs.  Complete nutrient intake assessments would, of course, be required to 
completely analyze baseline phenotypic data as well as data derived from homeostatic 
challenges. 

 
A subset of homeostatic challenges may consist of nutritional interventions – that is, how do 
individuals respond to increased (or decreased) levels of a nutrient.  A group of nutrigenomics 
researchers is organizing an international effort that will analyze responses of individuals of 
differing ancestral backgrounds to increased levels of micronutrients (vitamins and minerals).  
The first workshop on this approach was held in Potsdam, Germany in September 2008, and a 
second workshop to organize a steering committee will be held in Vancouver, Canada, on 
February 16,17, 2009 (http://www.nutrigenomics.ca/IMGP/Research/). 

 
Regardless of the experimental approach – or approaches – that are used, the infrastructure for genetic 
and environmental assessments must be improved.  Specifically, funds are needed to 

1. Re-sequence genes involved in or regulated by environmental factors in individuals from 
diverse ancestral backgrounds.  The Human Genome, Haplotype Map, and newly organized 
1000 genomes project (http://www.1000genomes.org  and [66, 100]) will analyze less than 
2000 individuals. More importantly, these sequences will not be linked to phenotype.  The 
Human Variome Project (HVP) is organizing an international effort to re-sequence genes 
involved in monogenic and polygenic diseases and curate locus specific databases for linking 
phenotype to gene sequence (http://www.humanvariome.org and [1, 18-21, 46, 83, 91]).  The 
HVP is developing the strategies, software tools, and databases which can be incorporated 
into the U.S. efforts for understanding gene – environment interactions. 

2. Development of nutritional and physical activity assessment tools for research and public 
use. Scientists in the the omics’ communities (genomic, proteomic, metabolomic, 
transcriptomic, phenotypic) have developed software tools and databases that can be 
accessed freely and used by researchers to improve experimental designs and for 
interpretation of data. The nutritional community has not developed a similar suite of tools for 
research or for easy use by the public.  Hence, analyzing environmental exposures, including 
nutrient intakes and physical activity, are challenging and are often stand-alone efforts that 
can not be linked among researchers.  Building an infrastructure for environmental exposures 
linked to omic analyses is a high priority for this initiative.  The USDA – ARS, FDA (NCTR 
and CFSAN), and NIH are coordinating a workshop to be held in Beltsville, MD, February 
24,25, 2009, to discuss the needs and strategies to develop environmental assessment tools 
and databases. 

3. The NIH has embarked on an expanded research program to translate biomedical research 
to the clinic as part of the NIH Roadmap for Medical Research 
(http://nihroadmap.nih.gov/clinicalresearch/overview-translational.asp).  However, these 
centers are located at major medical universities, typically in large cities.  A great need exists 
to develop research programs in small cities and rural areas.  Primary care research and 

http://www.nutrigenomics.ca/IMGP/Research/
http://www.1000genomes.org/
http://www.humanvariome.org/
http://nihroadmap.nih.gov/clinicalresearch/overview-translational.asp
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community based participatory research (e.g., [69]) may provide a path to involve individuals 
of different socioeconomic classes in small cities and rural areas of the U.S.  Gene – 
environment interactions may differ among these populations and their inclusion improves the 
science and more importantly, the equitable distribution of resources and benefits that may 
develop from this research initiative. 

Stakeholders  
 
Academic, government, and industry scientists will be interested in this initiative.  However, a key 
component will be the creation of a consortium of scientists from a wide diversity of social and biomedical 
research fields.  The partners listed on this proposal are only the nucleus of that team, and contacts 
within industry will be approached to join this effort.  A concerted effort will be made to develop 
collaborations through community based participatory research with community centers in rural and 
underserved areas of the U.S.  One example of this type of program is the Boys, Girls, and Adults 
Community Development Center of Marvell, AR (http://www.bgacdc.org -  [69]) 
 
International efforts will be integrated into this initiative since a complete understanding of gene – nutrient 
interactions will require comparison of responses in different genetic ancestries and cultures (e.g., [45]).  
The European Nutrigenomics Organization (NuG – http://www.nugo.org), the Human Variome Project, 
and the international efforts for diabetes research and micronutrient genetics (International Micronutrient 
Genetics Project).  Linking our efforts with international programs will improve the science and ensure the 
equitable distribution of benefits to all populations. 
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