A Proposed Method for Scaling of Identification False Match Rates False Positive Identification Rates (FPIR) Using Extreme Value Theory

Michael Schuckers

St. Lawrence University

schuckers@stlawu.edu

International Biometric Performance Conference

NIST

March 8, 2012

© Michael Schuckers 2012

Scaling of Performance

Known problem

Identification FMR (FPIR)

 How to predict performance from DB of 10³x10³ to DB of 10⁷x10⁷

How does threshold for FPIR=0.01 change?

Previous Bioauthentication Work

 Large-Scale identification System Design Hervé]arosz,]ean-Christophe Fondeur and Xavier Dupré

Empirical (Regression line)

Ident as N Verifications

Extreme Value Theory (G. Pareto Dist)

Modeling Distance

Notation

 Y_{ij} be match score from a comparison of sample from individual i compared to individual j.

• $X_{i:m} = \max_{j} \{Y_{ij}\}, 1 \le i \le n$

Goal is prediction of distribution of X_{i:M}

Extreme Value Theory

If there exists sequences of constants {a_m>0}
 and {b_m} such that

$$P\left(\frac{X_{i:m} - b_m}{a_m} \le z\right) \to G(z)$$

As m $\rightarrow \infty$ then G belongs to one of three families of distributions:

Gumbel, Fréchet, Weibull.

Limiting Distributions

Gumbel

$$G(z) = \exp(-\exp(-(x-b)/a))$$

• Fréchet

$$G(z) = \exp(-((x-b)/a)^{-\alpha})$$

if $z>b$, $G(z) = 0$ o/w

Weibull

$$G(z) = \exp(-(-((x-b)/a)^{\alpha}))$$

if zG(z) = 1 o/w

Comment

Stuart Coles:

"The remarkable feature of this result is that the three types of extreme value distributions are the only possible limits for the distribution of [maximums] regardless of the distribution F for the population."

Combining Limiting Distributions

Generalized Extreme Value (GEV) Distribution

Cdf given by

$$G(z) = \exp\{-[1+\xi((z-\mu)/\sigma)]^{-1/\xi}]\}$$

if
$$1+\xi (z-\mu)/\sigma > 0$$

Return Level (Target)

Return Level z_p is the value that will be exceeded with probability p. i.e. $P(X_{1:M}>z_p)=p$

$$z_p = G(1-p)$$

$$z_p = \mu - \sigma/\xi (1 - (-\ln(1-p))^{-\xi})$$
 if $\xi \neq 0$
 $\mu - \sigma (1 - (-\ln(1-p)))$ if $\xi = 0$

Goals

Take X_{1:m}, ..., X_{n:m}

Estimate distribution of $X_{i:M}$'s and find z_p from this.

Note: $z_{0.01}$ is value of scores that gives iFMR of 0.01.

Extreme Value Theory

M n

m

Ν

Bioauthentication Problem

Proposed Methodology

Proposed Methodology

- 1. Fit a GEV to the n observed $X_{i:m}$'s to get MLE's of μ , σ , ξ .
- 2. For each i, $1 \le i \le n$, generate k = ceil(M/m)-1 values from a GEV with parameters $\hat{\mu} + e_1 s_{\hat{\mu}}$, $\hat{\sigma} + e_2 s_{\hat{\sigma}}$, $\hat{\xi} + e_3 s_{\hat{\xi}}$.
- 3. Find $X_{i=max}^* = \max\{X_{i:m}, X_{i:1}^*, X_{i:2}^*, ..., X_{ik}^*\}$
- 4. Fit a GEV distribution to the \underline{n} X*_i's and get MLE's. Call these estimates $\hat{\mu}^*$, $\hat{\sigma}^*$, $\hat{\xi}^*$. Use these estimates to get z_p^*
- 5. Repeat steps 2 to 4, saving z_p^* each time.
- 6. Use distribution of z_p^* to make inference for FPIR=p.

Testing via Simulation/Synthetic

- 1. Create N x N database of scores
 - Calculate known z_p
- 2. Randomly sample n from {1,, N}
- 3. Run model on selected n x n database
- 4. Create 95% CI for z_p
- 5. Repeat Steps 2) to 4) 100 times
- 6. Determine % of times z_p inside Cl's.

Gaussian (mean =35)

Database Size	Sample Size	Stand. Deviation	P (FPIR)	Coverage
5000	500	10	0.01	0.95
5000	500	10	0.005	0.94
5000	500	5	0.01	0.92
5000	100	10	0.01	0.94
5000	100	5	0.01	0.93
5000	100	10	0.005	0.92*
10000	100	10	0.005	0.90

Gamma(mean=500,stddev=225)

Database	Sample	p(FPIR)	Coverage
Size	Size		
5000	500	0.01	0.96
5000	500	0.001	0.94
5000	100	0.01	0.96
5000	100	0.005	0.96

Summary

New method, theoretically grounded

Up to 2(?) orders of magnitude, good performance

Need to test on 'real' data

Need to look at more orders of magnitude.

Limitations

- Issues with correlation (?)
- Needs more testing
 - Synthetic: different distributions
 - 'Real' data
- More orders of magnitude to test
- Changing data collection process
- Address binning, etc.

Thank You! schuckers@stlawu.edu