
 

CRITICAL NATIONAL NEED IDEA 
 
 
 

Jerry Zhu, Ph.D. 
UCSoft 

2727 Duke Street, Suite 602 
(Telephone) 703 461 3632 

Jerry.zhu@ucsoft.biz 
 
 
 

Title 
 

Save Billions in Software Industry Each Year with Disruptive Innovation 
 
 
 

Keywords 
 

Software engineering, methodology, paradigm, age, transformation, infrastructure, productivity 

mailto:Jerry.zhu@ucsoft.biz


Save Billions in Software Industry Each Year with Disruptive Innovation 
 
 

Jerry Zhu, Ph.D. 
Jerry.zhu@ucsoft.biz 

 
 

There has never been shortage in the new stream of software processes, from chaotic process to unified 
process to agile methods. Each process claims to have solved the problems of its predecessors but inevitably 
has also introduced new problems often revealed to the users and not the authors of the new process. This 
paper describes why a novel discipline and associated technology can be developed to replace today’s 
myriad methodologies and dissolve all the problems manifested in today’s software industry. It proposes new 
concepts concerning software and its development and presents unprecedented opportunities and challenges 
to all enterprises.  

 
All life is problem solving. Our mind-set, the way we see 
problems, depends not on what is out there but on what we 
have been “trained” to “see.” We may discard—indeed we 
can be blind to—anomalies that do not fit. The pattern, 
which shapes our thinking, grants a particular perceptual 
blindness and rigidity to our perceptions of the world. This 
pattern of seeing is called perspective. The world 
perspective is a function of two factors. On the one hand, it 
depends on the material of experience, which is its 
foundation; on the other hand, it depends on the conceptual 
apparatus and the meaning rules that are bound up with it. 
A change in conceptual apparatus is reflected in a change 
in problems that one solves on the basis of the same data of 
experience. 
 
Related to perspective is paradigm. A paradigm is a set of 
beliefs or basic assumptions about reality, normally 
beneath the level of awareness and therefore mostly never 
questioned. The paradigm is the lens through which we 
look at the world; therefore, it determines our perspectives. 
Perspectives revealed through one lens are normally 
invisible through a different lens. To change our strategy is 
to change our perspective. A change of perspective without 
a change of its paradigm is the “orthodox novelty,” more 
of the same thing. A change in perspective based on the 
change of its underlying paradigm is an “emergent 
novelty,” a change in “species.” 
 
A company’s production process, the process that produces 
products or services, may be defined along three 
dimensions: 
• Skills: Processes take place between individuals or 

organizational units as individual or collective skills. 
• Objects: Processes result in manipulation of objects. 

These objects could be Physical or Informational. 
• Activities: Processes could involve two types of 

activities: Managerial (e.g., develop a budget) and 
Operational (e.g., fill a customer order). 

 

Any organized human activity gives rise to two 
fundamental and opposing requirements: the division of 
labor into various tasks to be performed and the 
coordination of these tasks to accomplish the activity. The 
design of software methodology and the structure of 
project organization, can be defined simply as the way the 
labor is divided into distinct tasks and the coordination 
among these tasks. Coordination based on skills, objects, 
activities correspond to three categories of methodology: 
lightweight, rightweight, and heavyweight. Heavyweight 
methodology defines tasks and their order of execution, 
bears responsibilities and specifies rules. Lightweight 
methodology places the responsibility back on people 
who make decisions momentarily on how the process 
should proceed. A change of coordination based on 
different dimension is a change in paradigm. A change in 
task definition within the same coordination is a change in 
perspective, hence a change of conceptual apparatus.  
 
The most important change taking place today is in the 
way we try to understand the world and in our conception 
of its nature. If our views of the world were out of date, 
our theories and the behaviors they drive would be out of 
date. Accordingly, we’d continue to miss opportunities 
and risk serious mistakes as reality and an old way of 
thinking used to interpret it continue to diverge.  The 
software industry has been experiencing failure 
methodologies, as demonstrated by the high failure rate of 
software projects. The so-called agile methodologies are 
good tries, but they are still not the right solutions, 
because they cause new problems. The mistake is that 
software development has been based on wrong 
paradigms. This paper shows why current paradigms fail 
and a new paradigm needs to emerge. Organizations and 
nations that are capable of discerning their passing 
paradigms and constructing new theories based on the 
emerging paradigm will become the economic, cultural 
and political superpowers of the 21st century. 
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The History and Present of Software Engineering 
The term software engineering (SE) was coined at the 1968 
NATO conference to introduce software manufacture to 
the established branches of engineering design. It was a 
deliberately provocative term, implying the need for 
software manufacture to be based upon theoretical 
foundations and practical disciplines that were traditionally 
used in established branches of engineering. It was 
believed during the conference that software designers 
were in a position similar to architects and civil engineers. 
Naturally, we should turn to these ideas to discover how to 
attack the design problem. The generic design process is to 
determine the design’s objectives in terms of specific 
requirements, which will be called functional requirements. 
To meet the functional requirements, a physical 
embodiment characterized in terms of design parameters 
must be created.  Engineering design is defined as mapping 
from the functional space to the physical solution space. 
Design activities of both fields may be approximately 
mapped: product planning to requirements, conceptual 
design to analysis, embodiment design to design and detail 
design to implementation. Both engineering design and SE 
clearly differentiate between problem and solution spaces 
and offer techniques and representations for exploring, 
bounding and structuring those spaces. Both fields rely on 
two categories of requirements: behavioral objectives and 
quality constraints. Both also depend heavily on 
technological and economic constraints as success criteria. 
 
There are also significant differences between the two. In 
traditional engineering there is a clear consensus as to how 
things should be built, which standards should be followed 
and which risks must be taken care of. If an engineer does 
not follow these practices and something fails, he or she 
gets sued. In SE, there is no such consensus and everyone 
follows his or her own methods. A huge diversity of design 
methodologies exists in the market today. Project fitness 
and effective use of methodologies become critical to the 
success or failure of software projects. There have been 
numerous examples of projects failing due to an improper 
methodology being used. For some organizations, the 
problem is the inadequacy of current methodologies, 
prompting them to keep looking for different and better 
ones. However, it has also been found that software 
engineers’ adherence to any methodology, far from 
facilitating development, only makes the design more 
problematic. Developers ignore certain aspects of 
methodologies not from a position of ignorance, but on the 
more pragmatic basis that certain elements are not relevant 
to the developments they face. 
 
Four decades after SE was first introduced as a model for 
the field of software development in 1968, issues 
surrounding software production remain unresolved. 
NATO conference attendees did not assert that software 
development is actually engineering, but rather, they 

presupposed that it would be fruitful to consider software 
development to be engineering for whatever benefits that 
might bring. The outcomes of the field of SE do not 
resemble those of any other branches of engineering in 
terms of success rate, error-laden deliverables, intellectual 
rework and subjective uncertainty. 
 
There is no correlation between project success and the 
use of the tidy “engineering” development process. 
Studies have shown that some messy-looking projects 
succeeded quite nicely, while many process-oriented 
projects fail quite badly. Developers find no practical 
advice from the SE model to solve problems on live 
projects but place their trust in unproven in-house 
methods. Adherence to methodology has been far from 
facilitating the development process and has only made 
the design process more problematic. Methodology 
adoption is a “fetish of technique” rather than a solution 
to the design problem at hand. 
 
According to The CHAOS Report, the success rate for 
software projects was a mere 34 percent in 2003. The 
remaining 66 percent either failed or were severely 
challenged. “Software failures are unprejudiced: they 
happen in every country to large companies and small; in 
commercial, nonprofit and governmental organizations; 
and without regard to status or reputation. Of the IT 
projects that are initiated, from 5 to 15 percent will be 
abandoned before or shortly after delivery as hopelessly 
inadequate. Many others will arrive late and over budget 
or require massive reworking. Few IT projects, in other 
words, truly succeed. The cost of litigation from irate 
customers suing suppliers for poorly implemented 
systems must be considered. The yearly tab for all these 
costs conservatively runs somewhere from $60 billion to 
$70 billion in the U.S. alone.” (IEEE Spectrum, 
September 2005) “Moreover, software errors cost the U.S. 
economy $59.5 billion annually and 80 percent of 
development costs go to identifying and correcting 
defects. In fact, few products (of any kind) other than 
software are shipped with such a high rate of errors.” 
(NIST 2003) SE has failed to contain the inherent 
complexity arising from frequent analysis paralysis, 
which leads to confusion as to how the software design 
process may effectively and efficiently proceed. Both the 
theory and practice of what constitutes a desirable SE 
design process remains poorly understood. It appears that 
as fast as SE makes progress, the demand made on it 
continues to increase beyond its capabilities. Given the 
widespread problems evidenced in the field of SE, was it 
valid for software designers to attempt to emulate their 
engineering design counterpart? To answer this question, 
we need to look deeper into the terms “engineering” and 
“machine” and compare them with software. 



The Fundamental Problem of SE 
The industrial revolution is concerned with the 
mechanization of work. There are two concepts: work and 
machine. Work is real and reduces to atoms. An atom has 
two properties: mass and energy. Work is defined as 
applying energy to matter to change the property of the 
matter.  Machine is defined as any object used to apply 
energy to matter.  To design any work is to analyze it: to 
reduce the work into work elements, mechanize those work 
elements by assigning machines to them and assign to 
people those that cannot be mechanized. What we then 
have is a network of work elements performed by men and 
machines. We call this network manufacturing. 
 
The input and output of manual work are material objects 
subject to the constraints of natural law, the law of physics. 
It is the natural law that dictates how work should be 
coordinated. That is, the movement of manual labor should 
be congruent with the movement of objects, governed by 
the natural constraints, into the final product. Frederick 
Taylor, the founder of scientific management, destroyed 
the romance of work. Instead of a “noble skill.” it becomes 
a series of simple motions. Hence the coordination 
mechanism of manual work is based on the activity as the 
scientific way of organizing work. The motion of objects is 
translated into a prescribed network of activities and their 
interactions. Taylor changed the paradigm from 
coordination based on skills to coordination based on 
activities and accordingly revolutionized the world of 
manufacturing. 
 
All engineering design methodologies belong to one class 
of machine design system. Any design methodology of this 
class resides between two ends: art and science. The 
control of the process of production begins with 
craftspeople. It is implicit that a craftsperson accumulates 
knowledge and by doing so gains control over the 
interaction between the tool and the material being 
transformed. If one wanted to automate a production 
process, then the accumulated knowledge would have to be 
embodied—hardwired—into the manufacturing system. A 
halfway stage would require that the knowledge be 
partially embodied in the machinery and partially 
embodied in the system operators. The knowledge they 
would have of operating would be gained from 
assimilating operating manuals and by doing.  Control of 
the process would be based on the knowledge of the nature 
and dynamics of the interrelationships between the system 
and its environment and between the components of the 
system and the input. As we learn more about the process, 
about the old variables, new variables emerge from the 
mists of ignorance. Process knowledge progresses from 
pure art (no variables are identified) to pure science (all 
variables are identified and understood) as we move from a 
low- to a high-knowledge stage. To gain perfect control, 
we need to have perfect knowledge. 

 
There is a natural relationship between degree of 
procedure and knowledge stage. If we use a high degree 
of procedure in a low-knowledge-stage production 
process, unanticipated problems will crop up frequently.  
If we use a low degree of procedure in a high-knowledge-
stage production process, it is inefficient to use lots of 
expertise to carry it out. 
 
SE is rooted in the machine paradigm. Making software is 
like making machines. The first step of software design is 
to propose a collection of product features—what the 
system should do—and then map them into the solution 
space. Software, like machines, is functionally 
decomposed into features that are then allocated to the 
resulting components. The functional decomposition also 
becomes anchored in contracts, subcontracts and work-
breakdown structures. These product features are 
equivalent to process variables in manufacturing. The 
Waterfall approach is at the end of science and the Agile 
approach is at the end of art. It is well known that product 
features can’t be completely known up front. The 
Waterfall model uses a high degree of procedure (from 
requirement to analysis to design to implementation to 
test), assuming all product features can be known up 
front. The Agile approach uses zero degree of procedure, 
assuming no product features can be known up front. 
Therefore, unlike traditional engineering, SE mostly 
mismatches the degree of procedure and the knowledge 
stage, resulting in either higher rework or lower 
efficiency. Both cause huge waste of resources.  
 
Can SE within the current paradigm evolve to increase a 
knowledge stage that matches the degree of procedure 
like traditional engineering does? The answer is no. The 
success of traditional engineering, the ability to evolve 
from art to science lies in its underpinnings. Specifically, 
the fundamental underpinnings of branches of traditional 
engineering are embedded in physical principles. The 
knowledge of underpinnings is scientific knowledge, and 
the knowledge of design is engineering knowledge. The 
task of engineers is to apply both types of knowledge to 
the solution of technical problems. They then optimize 
these solutions within the requirements and constraints of 
the project. For example, electronic engineers apply their 
scientific knowledge of electronic properties of silicon 
and their engineering knowledge of circuit design to build 
circuits. Mechanical engineers apply their scientific 
knowledge of mechanical properties of engineering 
materials and their engineering knowledge of mechanical 
design to build machines. For an engineer in any 
engineering branch to be successful in his or her career, 
he or she must master the corresponding scientific 
knowledge through education and accumulate engineering 
knowledge through practicing the profession. Without a 
solid knowledge of the material mechanics—its 



underpinnings—civil engineers would build bridges that 
they could not guarantee. 
 
Engineering activity is how engineers decipher problems 
within the set of constraints imposed by the medium in 
which they are working. The design process creates design 
elements that are explained based on the corresponding 
scientific knowledge. For the machine to be workable, its 
underpinning—the law of nature—must be stable and does 
not change. Because the design parameters of a machine 
are based on the explanations of the law of nature, a 
change of natural law would mean a change of design 
condition. An airplane would not be workable if gravity or 
air density would continuously change. Stable 
underpinning implies objective scientific knowledge. 
Design is scientific when the explanation of the design 
elements based on the scientific knowledge is objective. 
 
With SE, the fundamental underpinning is essentially 
personal opinion embodied in user requirements. It is well 
known that users do not know what the requirements are. 
User requirements are speculated and fed into the 
development cycle and tested in the form of deliverables. 
As a result, software components, unlike particulars found 
in nature, are not constrained by natural laws. The lack of 
natural constraints and physical dimensions in software 
implies that solutions that make tangible material meet our 
expectations do not apply. Software engineers, trained in 
the knowledge of design (e.g., information engineering), 
do not have the scientific knowledge on which design 
relies. Due to the lack of complexity-limiting natural 
constraints, software, if left otherwise unchecked, will tend 
to expand arbitrarily, toward the only constraint left—the 
capacity of our brains. This lack of objectivity raises 
people’s expectations beyond all reason of what can and 
should be achieved within a project’s time and resource 
limitations. Therefore SE, within its current paradigm, will 
not progress to same maturity as that of traditional 
engineering and will remain guesswork rather than 
disciplined inquiry. The only hope is for a change of 
paradigm, a change from coordination based on skills or 
activities to one based on informational objects. 

The Future of SE 
The most important contribution of management in the 
20th century, according to Peter Drucker, was to increase 
manual worker productivity fiftyfold. Taylor worked as a 
manual worker and studied manual work. Since that time, 
manual worker productivity began its unprecedented rise— 
3½ percent per annum compounded—which means 
fiftyfold since Taylor. On this achievement rest all the 
economic and social gains of the 20th century. The 
productivity of the manual worker has created what we call 
“developed” economies. Before Taylor there was no such 
thing—all economies were equally “underdeveloped.” 
After Taylor, productivity increases resulting from 

differences in skills have not existed. There have been 
none in respect to productivity other than between hard 
workers and lazy ones or between physically strong ones 
and weak ones. Productivity increases have been the 
result of new tools, of new methods, of new technology. 
Taylor’s solution, or what scientific management 
achieved, was a shift of production coordination based on 
skills to one based on activity where to great extent 
muscle was replaced by machines. 
 
The most important contribution of management in the 
21st century will be to increase knowledge worker 
productivity. In Peter Drucker’s words, in terms of actual 
work on knowledge worker productivity we are, in the 
year 2000, roughly where we were in the year 1900, a 
century ago, in terms of the productivity of the manual 
worker. It means that in terms of knowledge work, 
production processes are currently coordinated based on 
personal opinion. Software projects fail because of lack of 
good software professionals. A breakthrough in 
knowledge worker productivity will depend on a shift of 
coordination away from personal opinion to knowledge 
content itself. The throughput of knowledge work is 
informational objects that are ideas, mental images or 
representations of what may exist in the world about us. 
These informational objects are not subject to the law of 
physics but an arrangement that can be found to be 
inherent in the objects themselves. This should offer 
advantages far in excess of those provided by patterns 
imposed by any personal opinions. The development of a 
universal ordering of ideas must be based on a study of 
the notions we believe correspond to the contents of the 
real world about us. This inquiry must supply rules 
whereby the notions may be placed in positions that must 
hold. Personal opinion must, so far as possible, be ruled 
out as a reason for placement: the only help must come 
from a careful examination of the structure of the ideas 
themselves. 
 
This structure will bear directly on evolution and 
linguistics. Evolution goes beyond what can be described 
in well-defined language and instead enforces a language 
that is itself evolving. Certain forms of change and 
variability in an evolutionary process can be well 
described. And when described, the variability is 
represented by constancy, namely by time-independent 
describing sentences. It is when we interpret the sentences 
that we add the reality, the described variability. 
Evolution is a concept that cannot be described in a single 
formal language. This means that there is no formal 
language permitting description of its own interpretation 
process. The pair (description, interpretation) is 
productive in the sense that the interpretation process may 
be described in a higher language. This suggests the idea 
of an evolving language trying to catch up with its own 
evolution. The language must first evolve and can then 



describe the previous level of its evolution. This productive 
process can continue as an interpretation process grow 
mature to be descriptive in need of interpretation at the 
next level of evolution. This productive evolutionary 
process was described in these terms by Bertrand Russell: 
 

That every language has a structure concerning 
which in the language, nothing can be said, but 
that there may be another language dealing with 
the structure of the first language, and having 
itself a new structure, and that to this hierarchy of 
languages there may be no limit. 

 
In developing software, knowledge is all important, and it 
grows all the time through discoveries and decisions we 
make. Requirement change is due to this unruled 
knowledge growth and largely internally, not externally, 
induced. Carefully planned knowledge growth may greatly 
reduce the requirement change needed. One such 
knowledge-growth strategy that minimizes requirement 
volatility is to identify the purpose or the essential 
invariant need, called abstraction, that is more objective 
than subjective.  Once such need is identified, exhausted 
and modeled, it is time to search for next-level essential 
invariant need. This second-level need realizes the first-
level need through transformation of the first-level need, or 
subclass first-level need (e.g., biology is a special kind, or 
subclass, of physics), by adding more information. This 
process can go on until all needed requirement information 
is encapsulated in this hierarchy of requirement model that 
is parsimonious, invariant, precise and inclusive. The result 
is that we develop a stable requirement model that is 
emergent and open ended. Related theories include 
hierarchy theory and the methodology of deductive 
science. It reaches the goal that none of today’s 
methodologies can achieve: complete business and 
software alignment based on the law of deduction.  

The Emerging Discipline and Technology 
An engineering discipline is a consensus among its 
practitioners about systematic instructions of how things 
should be built. Guided by the discipline, engineers apply 
engineering knowledge in the context of scientific 
knowledge to solve technical problems. Civil engineering 
has a consensus. Consensus in SE has yet to emerge. 
Consensus lies in the theory and its coupling with practice. 
Consensus in traditional engineering is possible because it 
contains well-established scientific knowledge and the 
application of it in design is objective. In other words, the 
explanations of engineering design and its resulting 
components must be objectively determined in terms of 
scientific principles outside of personal opinion. The 
principles serve as stable underpinnings in which design is 
embedded. In SE, the stable underpinnings will be the 
business context and the linguistic hierarchy on which 

design is based. To develop software is to build 
knowledge level by level from the most abstract to the 
most concrete as an emergent process. The most abstract 
level is the business process model, and the most concrete 
level is the code. 
 
The resulting technology, application life-cycle 
management (ALM), would potentially substitute all 
ALM technologies current in the market. ALM, according 
to Forrester, is described as the coordination of 
development activities to produce software applications. 
Nearly one-third of enterprises already use ALM, and 
almost half are aware of it. Forrester defines AML as: 
 

The coordination of development life-cycle activities, 
including requirements, modeling, development, 
build, and testing, through: 1) enforcement of 
processes that span these activities; 2) management 
of relationships between development artifacts used 
or produced by these activities; and 3) reporting on 
progress of the development effort as a whole. 

 
The scope of ALM is described as follows: 

• ALM is a discipline, and a product category as 
well, and can be accomplished without 
supporting tools. 

• ALM is not merely a collection of life-cycle 
activities, but rather synthesizes them into a 
coherent system with an emphasis on interaction 
of these activities. 

• An ALM solution is the integration, not merely a 
collection, of life-cycle tools. Effective tool 
support for ALM connects the practitioner tools 
within a development project, such as an IDE, a 
build-management tool and a test-management 
tool. It’s the connections, rather than the tools 
themselves, that make up an ALM solution. 

 
ALM, as a newly accepted concept, has gone through 
accretion from AML 1.0 to the purposeful design of AML 
2.0.  AML 1.0 is point-to-point tools integration. These 
tools may contain redundant and inconsistent ALM 
features. The microprocesses that regulate practitioner 
efforts are embedded in each practitioner tool, and the 
macroprocesses that regulate interactions between these 
practitioners live in the integrations between these tools. 
This means that process assets aren’t versionable assets, 
can’t share common components and can’t be managed as 
a portfolio. For this reason, most shops focus their process 
governance efforts on paper-based process assets, hoping 
that they correspond to the processes instantiated in their 
tool sets. 
 
Forrester defines the architectural ingredients of ALM 2.0 
as presented below: 



• Practitioner tools assembled out of plug-ins  
• Common services available across practitioner 

tools  
• Repository neutrality  
• Use of open integration standards  
• Microprocesses and macroprocesses governed by 

externalized work flow  
 
There is no solution in the market that possesses all 
characteristics of ALM 2.0 as defined by Forrester. A key 
issue is the choice between a single-vendor platform to get 
the best ALM capabilities and a free pick of practitioner 
tools on its own merit but sacrificing on ALM. It has been 
accepted that organizations need ALM to have any hope of 
tackling the software crisis of poor delivery. An 
appropriate ALM strategy is also a sign of maturity within 
the organization. But the maturity of the organization is 
hard to reach if well-established discipline does not exist in 
the industry. The huge diversity in design approaches used 
by practitioners currently indicates the immaturity of the 
software industry and makes it impossible to create an 
industry-wide ALM solution. 
 
If the discipline is at fault, technology appropriation alone 
won’t achieve the intended goals of ALM. Can we have an 
ALM strategy with ensured successful delivery without 
using any ALM tools? That is a test of ALM discipline. If 
the answer is no, we have a defective discipline that in turn 
leads to a defective AML product. Given the immaturity of 
the software industry today, any AML solutions offered in 
the market currently are built on defective discipline and 
hence are defective solutions. The emerging discipline 
based on language hierarchy serves the role of an industry-
wide discipline so that an industry-wide ALM solution 
becomes possible. The single discipline of ALM logically 
determines the selection of the practitioner’s tools, 
integration and the implementation of the ALM 2.0 vision 
that addresses concerns in all situations. 

Build the Innovation Infrastructure 
Emergent industries, based on disruptive technologies and 
their associated discontinuous-innovation base, are critical 
to the growth of economies. Consequently, ways to 
encourage and assist the development and market 
penetration of these innovations are of interest to both 
policy makers and corporate strategists. Disruptive 
technologies and discontinuous innovations could create 
entirely new industries or replace the requirements for 
success in existing industries (e.g., the electronic watch 
replacing the mechanical watch). Theoretical 
transformation of SE not only alters the way software is 
developed but also transforms business models between 
software buyers and producers.  Therefore, the resulting 
technology is disruptive innovation. It is important to 
differentiate between technological and organizational 

innovation and between continuous and discontinuous 
innovation. 
 
Continuous 
Technological 
Innovation 

Technological innovation along a 
particular trajectory of technology 
competence development  

Discontinuous 
Technological 
Innovation 

Technology competence development is 
taken away from the existing trajectory, 
and it assumes some form of abrupt 
change in the business environment.  
Such changes often are a combination 
of technological, social, political and 
economic factors. The firm has a 
feeling of being “out of breath” or 
“beyond its comfort zone” in terms of 
technology competence. 

Continuous 
Organizational 
Innovation 

Organizational change in processes and 
structures without changing the identity 
of the firm for better efficiency 

Discontinuous 
Organizational 
Innovation 

Organizational change in identity, 
customer value or boundary for sudden 
transition in organizational capacity 

 
In technology-intensive industries such as the IT industry, 
competitive advantage is built and renewed through 
discontinuous innovation that creates a new family of 
products and business and results in a new “product-
technology-market” paradigm that greatly improves the 
value offered to customers. Discontinuous innovation 
offers greater competitive advantage but might not 
improve market penetration and, as a result, requires 
greater attention from academics and government. 
However, due to their relative novelty, discontinuous 
innovations lack the required infrastructure. Infrastructure 
is necessary for the development of radical products that 
are very different and new. For example, when electrical 
lighting was first introduced, it lacked a supporting 
infrastructure. 
 
There are upstream and downstream infrastructural 
components. Upstream infrastructure is related to 
technology development. The growth in technological 
knowledge and competence results in a four-stage 
progression: 1) basic research, 2) state of industrial 
manufacturing, 3) bottlenecks to technological 
development and 4) stable new technology.  In stage 1, 
the scientific base or principles that the innovation is 
based on exist, but products and supplies do not. As 
knowledge regarding the science and the ability to apply 
it grow, it is possible to manufacture prototypes. In stage 
2, competing standards and industrial processes exist. 
Firms are forced to design and build their own production 
equipment. Bottlenecks or constraints that hinder use or 
production are encountered and overcome in stage 3. 
Once these bottlenecks to production and/or use are 



addressed, the innovation becomes a stable new technology 
(stage 4). 
 
Downstream infrastructure relates to the demand side, or 
“market pull” for the products that develop as a result of 
discontinuous innovation. In an emergent market based on 
discontinuous innovation, the market passes through four 
stages: (1) nonexistent market channels, (2) initial market 
acceptance, (3) market augmentation and (4) new markets. 
Initially, these markets are faced with nonexistent market 
channels (stage 1): not only are there no distribution 
channels for new products, but potential customers are not 
even aware of the technology’s existence. Firms that enter 
the market at this time must realize that they must make an 
effort to develop infrastructure, since potential customers 
need to be made aware of the technologies, and time and 
effort will be required before customers are prepared to 
accept the new products. If advocates of the emergent 
industry do not focus on raising the awareness and 
acceptance of potential customer groups, the eventual 
acceptance of products by customers will be delayed, 
perhaps indefinitely. 
 
For the IT industry, discontinuous technological innovation 
requires discontinuous organizational innovation for the 
producers as well as market infrastructure transformation. 
A change of software development process means a change 
of organizational structure and processes of the producer. It 
also changes the behaviors of producers and consumers in 
the market because the innovation redefines products and 
services and their exchange patterns in the marketplace. 
These can be the two biggest barriers for adoption of the 
innovation, because current organization’s structure and 
market infrastructure lock them in place against change. 
Being the largest IT consumer, the federal government is in 
a perfect position to lead the innovation adoption by first 
utilizing the new discipline. Hence, it is in the 
government’s best interests to invest the necessary research 
and development and then use the technology it supports. 
 
The United States has been at the center of science and 
technology. It has become more challenging to maintain 
this leadership. Staying in the forefront of science and 
technology meets both long- and short-term national needs. 
As the national debt hits a historic record, this innovation 
will save tens of billions of dollars in waste in IT spending 
and operating costs by the government. “It’s time we once 
again put science at the top of our agenda and work to 
restore America’s place as the world leader in science and 
technology,” President-elect Barack Obama said in a radio 
address when he selected four top scientific advisers. 
“Whether it’s the science to slow global warming, the 
technology to protect our troops and confront bioterror and 
weapons of mass destruction, the research to find 
lifesaving cures, or the innovations to remake our 
industries and create 21st-century jobs—today more than 

ever, science holds the key to our survival as a planet and 
our security and prosperity as a nation.” 
 
Professor Russell Ackoff said that we are in the early 
stage of transformation between two ages: the industrial 
age and the systems age. An age is a period of history in 
which people are held together by, among other things, 
use of a common method of inquiry and a view of the 
nature of the world. To say we are experiencing a change 
of age is to assert that both our methods of trying to 
understand the world and our actual understanding of it 
are undergoing fundamental and profound transformation. 
The research proposed in this paper serves as catalyst to 
the transformation in the software industry.  Because we 
live in a world where change has always been 
accelerating, the competitive edge of modern 
organizations lies in their ability to absorb rather than 
resist change. Because modern organizations critically 
depend on their information systems for daily operations, 
information systems are required not only to support 
corporate processes but also to be adaptive in response to 
evolving business requirements. A transformation in the 
software industry will increase the capacity of 
information systems by a different magnitude. Because of 
the industry-wide innovation and its impacts on other 
industries critically dependent on software, success 
requires a necessary infrastructure that is beyond the 
reach of any single business, let alone a small business. 

Conclusion 
SE historically emulated the traditional engineering 
design approach in the belief that software developers 
were in the same position as civil engineers to attack 
problems. Civil engineering has a clear consensus on how 
things should be built and what standards should be 
followed; however, SE is different—it has no such 
consensus: everyone promotes his or her own methods. 
Furthermore, unlike bridges that are normally on spec and 
on budget and do not fall down, software is seldom on 
spec or on budget and almost always falls down. This is 
due to the difference in underpinnings, physical principles 
in traditional engineering but arbitrary human imagination 
in SE. Establishing the missing stable underpinnings in 
software development holds the potential to transform the 
theoretical foundation of SE into one comparable to the 
foundation of any branch of conventional engineering. 
This disruptive innovation replaces requirements for 
success in software industry and is critical for the growth 
of economies and creating new businesses and products. 
However, industry-wide innovation lacks the desired 
infrastructure. Accordingly government support would be 
crucial in bringing the unproven technology to market. 
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