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Detector technology for enhanced speed

and accuracy BRUKER

e Energy discriminating strip detectors

e 2D detectors




Monochromatization and energy
dispersive detectors
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Monochromatization

* Before 2000, >90% of all instruments have been equipped with
point detectors, > 50% with (secondary) monochromators

* Intensity loss —~80-90% with respect to unfiltered rad.

°* Today, >90% of all instruments are equipped with PSDs, the
majority with KR-Filters

* Intensity loss —40-60% with respect to unfiltered radiation

* Absorption edges

* Poor filtering of fluorescense

°* An energy dispesive detector could in principle improve effective
sensitivity by 2-10 times and reduce errors due to absorption
edges and fluorescence
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Silicon strip detector principle

e Electron-hole pairs created in
depleted silicon by X-ray
photoionization

e Charge carriers drift to readout
strips

‘/—-readout strips

|
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voltage

e Key advantages

~. electrons

e High counting rate

aluminum
e Typically of order 106
counts/strip-sec

e Good spatial resolution

e Good energy resolution than
other detectors

e Requires optimized readout




Limitations of energy resolution due to
charge sharing effects
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* Energy resolution is accomplished
by “counting” the electrons in a
strip or pixel
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* F=Fano factor, N=# of
electron-hole pairs

* Problem, not all electrons are
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LYNXEYE XE

« The LYNXEYE XE is the first energy
dispersive Si strip detector for
home-laboratory X-ray diffraction

* Inter-strip logic to correct for
charge sharing

Detector type Compound silicon strip

# strips 192 strips, 75 mm pitch

Active area 14.4 x 16mm

Modes 1D and OD

Wavelengths Cr, Co, Cu, Mo, and Ag

Energy resolution
Cu

<680eV @ 8 KeV




Counts

Counts

LYNXEYE XE

: L : . BRUKER
Energy Resolution with inter-strip logic
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Traditional silicon strip / pixel ~1.6-2.0

Proportional counter ~1.1-1.6
LYNXEYE XE <0.68

2600 Graphite monochromator ~0.5-1.0

Si(Li) detector (Peltier cooled) <0.2
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Incorporation in inter-strip logic improves
energy resolution 2-3 times compared to
conventional Si detector
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Monochromatization
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Traditional Si Strip
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Monochromatization BR: u: K:E:R
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Filtering of fluorescense radiation (Cu)




LYNXEYE XE

L BRUKER
Filtering Fe fluoresecence: Iron Ore
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Filtering of Fluorescense Radiation (Cu) BROKER

°* Manganese:

* Fluorescense filtered completely at <5% loss of peak intensity

* lron:

* Fluorescense filtered completely at <5% loss of peak intensity

* Cobalt:
* > 90% Fluorescense filtered at <5% loss of peak intensity

* > 98% Fluorescense filtered at <25% loss of peak intensity

* Nickel:
* > 50% Fluorescense filtered at <5% loss of peak intensity

* > 90% Fluorescense filtered at about 60% loss of peak intensity using
an additional primary Ni filter




LYNXEYE XE Kp filtering

BRUKER
NIST SRM 1976a (Corundum)
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LYNXEYE XE KR filtering Ao
NIST SRM 1976a (Corundum)
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XRDz: Diffraction pattern with an
both y and 26 information

e Integrating over larger y range improves statistics
e Especially for microdiffraction, mapping or time resolved measurements
e 2D structure of Debye rings gives additional information

e Stress, texture, particle size




What is important for XRD??
Photon-counting detector

(<)
BRUKER
(<)

* Photon-counting detectors are preferred

Source: C. Hall et al., Nucl. Insir. and Meth. in Phys. Res. A 348 (1994) 627

« In XRD? typically integrate over 10000
hundreds or thousands of pixels ’

image plate

1000;* MWPC f
 Detectors with a finite noise 100:_
background (e.g., CCD, IP) result ]
in lower data quality 10.
1000 ¢
« CCDs and IPs better for 100;

crystallography (where
reflections span only a few
pixels)

10

intensity (photons/mm2)

position (mm)



What is important for XRD?
BIGGER is BETTER

To cover a given solid angle we may
use a big detector farther away or a
small detector closer to the sample

« E.g., a 140 mm detector at D=150
mm and a 28 mm detector at
D=30 mm cover the same solid
angle

For a given angular resolution, a
smaller detector requires a smaller
beam, this means LESS INTENSITY

« However, if the 140 mm detector
employs a 500 micron beam, to
achieve the same resolution the
28 mm needs to employ a 50
micron beam

* This results in a 100 times loss
In intensity for the small
detector!
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Types of photon-counting area detectors:
Gas and Silicon Pixel Array (Si-PADs) BE%R

e Photon counting area detectors employ either conversion in gas
(usually Xenon) or conversion in a semiconductor (usually Silicon)

e Gas detectors: VANTEC (Bruker), Triton (Rigaku)

e Advantages

e Large active areas, no gaps

* Lower cost per unit area- Key advantage for lab
e Disadvantages

e Lower count rate capability

e Silicon pixel arrays: Pilatus (Dectris), others in development (e.g.,
Rigaku HPAD)

e Advantages
e Higher count rate - Key advantage for synchrotron

e Disadvantages
e Higher cost per unit area




Cur_rent generation XRD detectors BROKER
derived from HEP technology ( >

CMS Detector

PIXEI‘J ) 1 CTROMAGNETIC
Tracker e

ECAL

HCAL

Solenoid

Muons Inner tracker:

Silicon pixel detectors

ETURN YOKE
nes

Total weight : 14000 tonnes
Overall diameter :150m
Overall length 1287 m
Magnetic field 38T

Outer muon chambers:
Gas (RPC) detectors
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Silicon Pixel Arrays Detectors for XRD BROKER

DECTRIS

« Silicon Pixel Array detector
(Dectris Pilatus 2M) proven to
collect very high quality XRD?

* Uniquely capable of handling
the very high flux at 3rd
generation beamlines

 However, large Si-PAD arrays are
so far less common for home
laboratory use because of the
relatively high cost
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Gas detector principle:

] BRUKER
Xe microgap detector
* X-rays absorbed in high X_ray
pressure Xenon \
* Entrance window spherical . &?&Liiae

to minimize parallax

high pressure Xe
voltage

—resistive cermet

1||IJ

* Electrons drift to amplification
grid S —

insulator

\—read out strips

* Electrons undergo
Townshend avalanche
multiplication

e Gain =106
* Results in noiseless readout

* Resistive anode protects against
discharges (US patent 6340819)

* Readout strips capacitively
coupled




VANTEC-500 — Xe microgap detector BROKER

= Large active area: 140 mm in dia.

= Frame size: 2048 x 2048 pixels

= Pixel size: 68 um x 68 pm

= High sensitivity: 80% DQE for Cu

= No gaps

= Highly uniform response (<1%)

= High max linear count rate: 0.9 Mcps
= Low background noise:<10- cps/pix
= Maintenance-free: no re-gassing

= Very radiation hard

= Proven reliability: =500 installed
worldwide




XRD? data
BRUKER

= Multilayer battery
anode.

= 20 coverage: 70° at 8
cm detector distance

= A single frame
showing information
on phase, stress,
texture and grain size




Fast mapping: an
Scanning Over a Tooth by XRD?
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Microdiffraction:
Forensic analysis of car paint
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video image (for documentation)

integration of data: E \
diffractogram for SN, | (1911 PR L
phase identification L R A A AR AR A A AR AR AR

2-Theta - Scale
W New Frame - File: 2708_07.raw - Start: 11.905 ° - End: 78.926 ° - Step: 0.040 °
[¢]21-1276 (*) - Rutile, syn - TIO2
[4105-0586 (*) - Calcite, syn - CaCO3
[m]36-0426 (*) - Dolomite - CaMg(CO3)2




Conclusions BRUKER

°* Energy dispersive detector arrays represents a paradigm change
in laboratory X-ray diffraction

* Highly effective filtering of fluorescence, white radiation and K-beta
radiation at greatly reduced intensity losses compared to conventional
detectors

* No absorption edges associated with metal filters

* Significantly improved intensity, peak-to-background-ratio, lower
limits of detection

* XRD? is a powerful technique for a variety of applications including
mapping, microdiffraction, stress, texture

* Gas detectors and silicon pixel array detectors both deliver vey high
quality XRD?

* For applications with higher count rates silicon detectors are preferred

* For applications with lower count rates gas detectors deliver
comparable data
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