

The Use of Statistical Analysis to Characterize Noise and Zygosity in Targeted Sequencing of Forensic STR Markers

Sarah Riman¹, PhD; Hari Iyer², PhD; Lisa Borsuk¹, MS; Peter M. Vallone¹, PhD

¹Applied Genetics Group ²Statistical Design, Analysis, and Modeling Group

#NISTForensics

Disclaimer

<u>Points of view in this presentation are mine</u> and do not necessarily represent the official position of the National Institute of Standards and Technology or the U.S. Department of Commerce.

<u>NIST Disclaimer</u> Certain commercial products and instruments are identified in order to specify experimental procedures as completely as possible. In no case does such an identification imply a recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that any of these products are necessarily the best available for the purpose.

Overview

 Forensic DNA typing using the gold standard "Capillary Electrophoresis" (CE) technology vs. "Next Generation Sequencing" (NGS) technology

• Why implement NGS if you can accomplish DNA typing by CE?

Characterization of single-source PowerSeq 46GY DNA profiles

Forensic DNA typing using the gold standard "Capillary Electrophoresis" (CE) technology vs. "Next Generation Sequencing" (NGS) technology

General Workflow for Next Generation Sequencing (NGS)

General Workflow for Next Generation Sequencing (NGS)

What is Library Construction ?

STR typing using CE

Dve-labeled STR amplicons

The aim of library preparation is to flank amplified STR products with adapters on both ends

Library preparation is essential for successful sequencing

Data Analysis using CE technology vs. NGS technology

Data Analysis by CE

Separation by size
Length variation: 15
Peak Height in RFU

Data Analysis by CE

Data Analysis by NGS

Separation by size
Length variation: 15
Peak Height in RFU

ATCCTGCAGATGCATCC GTCTGTGCTGTTGCCTG GTTATTGTAAAGTCTCC GATTCCCTTTTAGTTGC TCTCATTTGCACTGGTT CTGGGCCAACAAAAGCA CAGCAGTTTTTCCCTCC TTTCTTTATGGTGCTTG

- **Separation by size**
- ✓ Length variation: 15
- Peak Height in RFU— Depth of coverage
- + Sequence variation

Why implement NGS if you can accomplish DNA typing by CE?

Current Markers used in Forensic Genetics

NGS Sequencing Application and Markers

• Examine one marker type at a time in one sample

- Multiplex samples
- Multiplex markers
- Distinguish between alleles identical by length but different in sequence content

Forensic labs are moving from threshold based systems towards fully continuous and probabilistic DNA interpretation systems

Forensic Sci Int Genet. 2016 Jul;23:226-239. doi: 10.1016/j.fsigen.2016.05.007. Epub 2016 May 12.

Developmental validation of STRmix[™], expert software for the interpretation of forensic DNA profiles.

Bright JA¹, Taylor D², McGovern C³, Cooper S³, Russell L³, Abarno D⁴, Buckleton J³.

Forensic Sci Int Genet. 2016 Mar;21:35-44. doi: 10.1016/j.fsigen.2015.11.008. Epub 2015 Nov 30.

EuroForMix: An open source software based on a continuous model to evaluate STR DNA profiles from a mixture of contributors with artefacts.

<u>Bleka \emptyset ¹, <u>Storvik G</u>², <u>Gill P</u>³.</u>

<u>J Forensic Sci.</u> 2011 Nov;56(6):1430-47. doi: 10.1111/j.1556-4029.2011.01859.x. Epub 2011 Aug 9.

Validating TrueAllele® DNA mixture interpretation.

Perlin MW¹, Legler MM, Spencer CE, Smith JL, Allan WP, Belrose JL, Duceman BW.

Current considerations of the CE probabilistic genotyping (PG) systems

What do we need to understand to establish STR NGS interpretation systems?

We need to understand and analyze the STR NGS sequence data

CE and NGS sensitivity experimental design

CE and NGS sensitivity experimental design

Noise Thresholds for CE Data

Forensic Sci Int Genet. 2012 Dec;6(6):723-8. doi: 10.1016/j.fsigen.2012.06.012. Epub 2012 Jul 12.

Maximizing allele detection: Effects of analytical threshold and DNA levels on rates of allele and locus drop-out.

Rakay CA¹, Bregu J, Grgicak CM.

<u>J Forensic Sci.</u> 2007 Jan;52(1):97-101.

Run-specific limits of detection and quantitation for STR-based DNA testing.

Gilder JR¹, Doom TE, Inman K, Krane DE.

J Forensic Sci. 2013 Jan;58(1):120-9. doi: 10.1111/1556-4029.12008. Epub 2012 Nov 6.

Analytical thresholds and sensitivity: establishing RFU thresholds for forensic DNA analysis.

Bregu J¹, Conklin D, Coronado E, Terrill M, Cotton RW, Grgicak CM.

Analytical Threshold Most Commonly Determined by:

$$AT_{M1} = \overline{Y}_{bl} + ks_{bl} + ks$$

J. Bregu, D. Conklin, E. Coronado, M. Terrill, R.W. Cotton, C.M. Grgicak, Analytical thresholds and sensitivity: establishing RFU thresholds for forensic DNA analysis, Journal of forensic sciences 58(1) (2013) 120-9.

Noise Thresholds for NGS Data

Forensic Sci Int Genet. 2017 May;28:82-89. doi: 10.1016/j.fsigen.2017.01.017. Epub 2017 Feb 3.

Statistical modelling of Ion PGM HID STR 10-plex MPS data.

 $\underline{\text{Vilsen SB}}^1, \, \underline{\text{Tvedebrink T}}^2, \, \underline{\text{Mogensen HS}}^3, \, \underline{\text{Morling N}}^4.$

Removal of general noise using thresholds created by fitting the distribution of general noise sequences.

PLoS One. 2017 May 18;12(5):e0178005. doi: 10.1371/journal.pone.0178005. eCollection 2017.

A technique for setting analytical thresholds in massively parallel sequencing-based forensic DNA analysis.

<u>Young B¹, King JL², Budowle B^{2,3}, Armogida L¹.</u>

Forensic Sci Int Genet. 2017 May;28:52-70. doi: 10.1016/j.fsigen.2017.01.011. Epub 2017 Jan 27.

Developmental validation of the MiSeq FGx Forensic Genomics System for Targeted Next Generation Sequencing in Forensic DNA Casework and Database Laboratories.

Jäger AC¹, Alvarez ML², Davis CP³, Guzmán E⁴, Han Y⁵, Way L⁶, Walichiewicz P⁷, Silva D⁸, Pham N⁹, Caves G¹⁰, Bruand J¹¹, Schlesinger F¹², Pond SJK¹³, Varlaro J¹⁴, Stephens KM¹⁵, Holt CL¹⁶.

 $AT = c * (Max_{noise} - Min_{noise})$

AT level is set at 1.5% of total locus coverage

Croat Med J. 2017 Jun 14;58(3):214-221.

Investigation of the STR loci noise distributions of PowerSeq[™] Auto System.

Zeng X¹, King JL, Budowle B.

Characterization of sequences in STR profiles generated on MiSeq platform using the PowerSeq 46GY prototype kit

We grouped the generated sequences intro three categories:

- **S1** = Back stutter of the longest uninterrupted stretch of the basic repeat motifs within an allelic sequence
- **S2** = Back stutter sequences not attributed to S1
- **N** = Noise sequences

Distribution of Known Allele, Stutter, and Noise Sequences

As expected, improved discrimination between known alleles (A) and the remainder of the sequences (N, S1, and S2) is observed as the amount of DNA template increases.

Observed Sequences and their coverage at a heterozygote D21S11 Locus

Evaluating the tradeoff between the allelic (true positives), stutter, and noise sequences (false positives)

At a percent coverage of 15%:

- 363 peaks are called
 - 352 can be attributed to A
 - 21 can be attributed to N
 - 0 can be attributed to S

At a percent coverage of 15%:

- 361 sequences are called
 - 350 can be attributed to A
 - 8 can be attributed to N
 - 3 can be attributed to S1
 - 0 can be attributed to S2

Evaluating the tradeoff between the allelic (true positives), stutter, and noise sequences (false positives)

A value of 15 % is <u>ONLY</u> used for illustrative purposes and not as a recommended threshold. Each lab should perform sensitivity experiments and establish a threshold for interpretational purposes.

Summary

- Understanding the behavior of STR NGS profiles can help in statistical modeling and probability distributions needed for establishing an STR NGS interpretation system.
- Future work will focus on analyzing more single source and mixture samples.

Presentation will be available for download from STRBase: http://strbase.nist.gov/NISTpub.htm#Presentations

https://strbase.nist.gov/pub_pres/Sarah-ISHI2018-Poster-SR-final_pmv.pdf

Acknowledgement

<u>NIST</u>

Pete Vallone

Hari Iyer (Statistical Design, Analysis, and Modeling Group)

Lisa Borsuk

Becky Steffen

Erica Romsos

Katherine Gettings

Kevin Kiesler

Margaret Kline

Megan Cleveland

<u>Promega</u> Doug Storts Spencer Hermanson FundingNIST Special Programs Office: *Forensic DNA*FBI Biometrics Center of Excellence: *Forensic DNATyping as a Biometric tool.*

All work presented has been reviewed and approved by the NIST Human Subjects Protections Office.

Contact: sarah.riman@nist.gov

