

Image Alignment and Feature Extraction for Shoeprint Matching

Gautham Venkatasubramanian

Creative Visualization

FORENSICS ONIST

Creative Visualization

Creative Visualization

Creative Visualization

Creative Visualization

ORENSICS @NIST

Ideal Comparison Method

 Account for the below factors while computing similarity:

What is Alignment?

- Process by which effects of translation, rotation, scaling, and shearing are minimized
- Current Approaches:

FORENSICS@NIST

Why Align?

- Reduce complexity of similarity computation
 - Reduce comparisons between unrelated features
 - Eliminate some cases altogether
- Allow comparison of localized features
- Present information that would agree with examiner's intuition

Align using Interest Points

- Interest points in an image are any points resistant to the rotation, translation, scaling, shearing, and noise
 - Corners
 - Edge points
 - Centers of Circles
 - Points from SIFT, SURF etc.
- Impressions that match (i.e. from the same shoe) will have many common interest points.

Distinguishing Power

- Can we use this alignment method to distinguish matches and non-matches?
- Impressions that match (i.e. from the same shoe) will have many common interest points.
 - The number of points in the common configuration is an indicator of similarity.
 - The spread of points in the configuration is an indicator of global correspondence

-ORENSICS@NIST

Feature Extraction after Alignment

