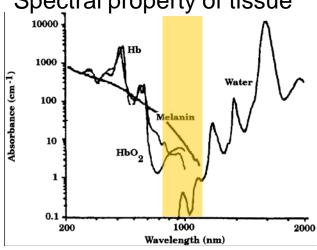


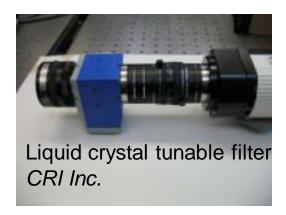
Spectrally tunable sources and filters: tools for clinical bioimaging

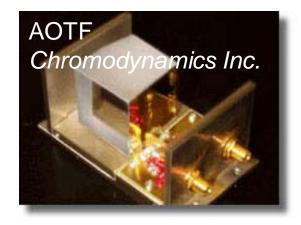
Toni Litorja, David Allen, Eric Shirley, Steve Brown, Joe Rice
Optical Technology Division
National Institute of Standards and Technology

Hyperspectral Imaging


Environmental remote sensing


Chemical imaging spectroscopy

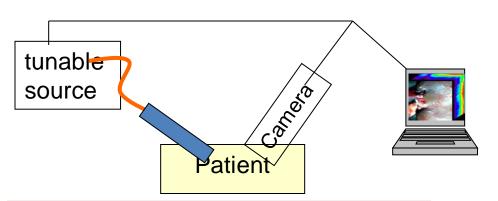

Spectral property of tissue


Hyperspectral imaging for clinical use

Using Tunable Filters

- Clinical hyperspectral imaging
- Uses ambient lighting
- Non-mechanical scanning
- Many commercial sources

New filter technologies still under development


NIST OTD Metrology

Need spectral band characterization (filter function)

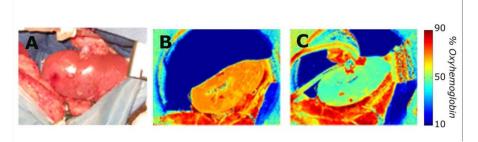
Normalize images to standard reference for reflectance

Corrections for spectral stray light

Using Tunable Sources

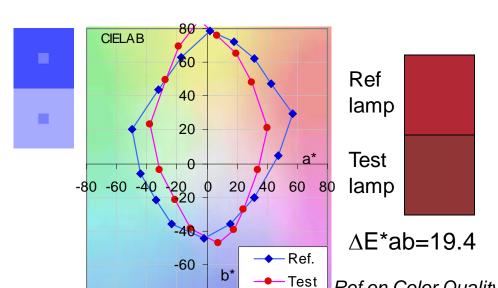
Dr. Karel Zuzak and Dr. Ed Livingston
UT Arlington/UT Southwestern Medical Center
DLP Surgical Utility
http://www.youtube.com/watch?v=Bz46ynbLrx0

Useful in laparoscopy

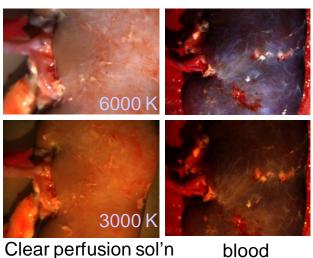

Faster acquisition

Metrology:

Characterization of slit function


Corrections for stray light

Hyperspectral images (HSI) demonstrating real-time renal tissue oxygenation. A. In situ view of porcine kidney, B. Prior to occlusion of the renal artery and vein (AV), the renal parenchyma demonstrates a high percentage of oxyhemoglobin (% HbO2), C. After 55 minutes of ischemia, HSI detects a dramatic decrease in renal % HbO2.


Illuminant Simulation for Visual Contrast Enhancement

Can we change the spectral distribution of the light source to enhance contrast between anatomically different but similarly colored features?

Provide a clinician another control besides brightness to aid in discrimination

Ref on Color Quality Scale: Davis and Ohno, NIST

-80

Example: A normalized hyperspectral image of a perfused porcine kidney are presented using simulated Planckian radiators of 3000 K and 6000 K color temperature

Use CIE color contrast metrics Simulate using image processing software Realize using tunable source

Digital Tissue Phantoms for Imager Calibration

There is a need for a standard medical imager calibration phantom to reduce uncertainties in interlaboratory clinical comparisons

Phantoms used in medical imaging are tissue-mimetics made of soft materials with short shelf life and are non-portable

Technical Approach: use the HIP concept to project images as the calibration phantom

Image Decomposition Image Projection **Standard Image Acquisition** Image acquired using a calibrated imager Endmembers hyperspectral image HIP Ref: Rice and Brown, NIST

Contact Information

Maritoni Litorja

NIST / Optical Technology Division

100 Bureau Drive MS 8441

Gaithersburg, MD 20899-8460

301-975-8095

litorja@nist.gov