(D) Rigalky Characterization of Cross-Sectional Profile of Resist Pattern Using Grazing-Incidence Small Angle X-Ray Scattering

Yoshiyasu ITO, Akifusa HIGUCHI, Kazuhiko OMOTE

RIGAKU Corporation

Abstract
The scale of semiconductor devices is continuously shrinking and the critical dimension is now expected to reach down close to ten-nanometers in the near future. The performance of such a fine device can be easily affected by a slight variation in the shape of the resist pattern. It is, therefore, important to carry out quality control over the cross-sectional profile of resists. We have developed a new SAXS-based metrology tool (CDSAXS). The system utilizes the grazing incidence geometry in order to perform quick measurements on mass production lines. Resist line \& space and hole patterns were measured by the our new x-ray metrology. The obtained cross-sectional profiles were consistent with those observed by cross-sectional SEM.

Current status of RIGAKU CD-SAXS

CD-SAXS measures only signal from periodic structure such as line \& space, dot and hole. The signal cannot be affected by the under-layer structure. OCD metrology is low robustness for a slight variation of optical parameters of under-layer structure.
Recently, verification metrology system (VMS) has been proposed and introduced on mass production lines.

Grazing incidence small-angle x-ray scattering
Monochromatic x-ray irradiates to the sample surface
The incident angle is set to be very close to the critical angle of total external reflection.
The sample has to be rotated around the vertical axis at the irradiated point during the measurement
Diffracted x-rays are collected by a two dimensional pixel array detector.

- Lateral direction
- Average pitch can be analyzed by the diffraction angle - Line-width, line-width variation (LWR-like) and pitch variation (LER-like) can be determined by the intensity ratio of these diffraction peaks.
- Vertical direction

Each diffraction peaks has a characteristic fringe pattern in the vertical direction.
Depth, sidewall shape, and corner rounding shape can be determined by the periodicity and the phase of the fringe patterns, which strongly depend on the order of diffraction h.

X-ray source Micro-focus x-ray tube (30W), Multilayer mirror optics Beam size : $\mathbf{1 5} \boldsymbol{\mu \mathrm { m }}$ vertical $\times \mathbf{2} \mathbf{~ m m}$ horizontal
Detector PILATUS 100K ($0.172 \mathrm{~mm} /$ pixel $)$

Sensitivity of diffraction pattern for the

 variation of cross-sectional profile

Cross-sectional profile analysis of resist line \& space pattern

- Sample preparation

Four kinds of resist L/S pattern wafers with pitch size of 130 nm were fabricated with different material composition and exposure condition, intentionally, in order to obtain different cross-sectional profile between four resists. - Resist A is NG product. Resist B, C, and D are OK products.

- Motivation

Our challenge is to distinguish the OK products and NG products.

- All periodicity of 1t $^{\text {t }}$ order diffraction of the four resists are equal. - There is no difference in depth between the four resists.

- Phase of higher order diffraction of the resist A is different from the other resists. Side-wall profile of the resist A should be different from the others.
- Results

Obtained cross-sectional profiles show an inversed tapered shape in the four resists.
Top corner rounding shape of the resist A (NG product) is different from the others (OK products).
These results can be regarded as consistent with the cross-sectional SEM results.
Our new x-ray metrology, it is possible to distinguish the OK product and NG product.

Conclusion

Our newly-developed x-ray metrology tool, CD-SAXS, has been demonstrated. Cross-sectional profiles of resist patterns were measured by the instrument. The results obtained by the CD-SAXS were consistent with those obtained by cross-sectional SEM observation. CD-SAXS has a capability for measuring cross-sectional profile non- destructively. Our new x-ray method is very effective in CD metrology on mass production lines.

Cross-sectional profile analysis of resist contact holes

- Sample preparation

Two kinds of resist hole-patterned wafers were fabricated using different composition and exposure condition.
The holes are arranged in a 2D square lattice-like form in the lateral plane with the pitch size of 90 nm .

- Experimental method

Diffraction data were collected in two directions [1 0] and [1-1].

- Motivation

CD-SEM employing top view observation cannot detect undercut shape - Our challenge is to detect a slight variation of the cross-sectional profile between the two resists.

Results

- The CD-SAXS results reproduced the characteristics obtained by the cross-sectional SEM. The resist E has the rather vertical cylindrical shape.
- The resist F has the heavily undercut shape.
- Our new x-ray metrology, it is possible to detect a slight variation of cross-sectional profile of resist hole pattern.

