

Evaluating Attack Resistance Levels of Biometric Systems

Tony Mansfield National Physical Laboratory, UK

IBPC 7 March 2012

Outline

- 1. Rationale/Scope/Terminology
- 2. NPL / CPNI evaluation of biometric terminals for automated access control
- 3. Attack levels of the CPNI Grading System, with examples
- 4. General findings on attack resistance of biometric systems from th NPL / CPNI evaluation
- 5. Issues in evaluating attack resistance

Rationale

Quotes on the web

- We claim that we can fake every sensor ...
- Fingerprints in particular are laughably easy to spoof....

But

- Are some systems harder to spoof than others
 - e.g. systems with fake finger detection
- Are biometrics easier to spoof than other components of your system?
- Are these attacks relevant for your use case?

Measures of attack resistance are needed that

- Distinguish between good and poor attack resistance
 - Broad equivalence of metrics over different biometric technologies
- Relate attack resistance to the use case & risk assessment
 - Commensurate with security levels of other system components

Terminology

Attack

- This talk focuses on attacks at the sensor / terminal, including:
 - Artefact
 - Tamper
 - Bypass

Level of an attack

 Difficulty or level of sophistication of the attack

System resistant to an attack

- Prob[Attack Succeeds]
 is sufficiently low
- Prob[Attack detected & alerted] is sufficiently high

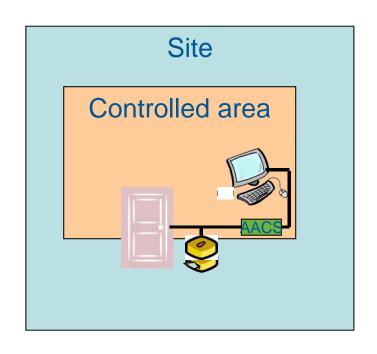
Level of attack resistance

Attack resistance at level n implies the system is resistant to attacks at level n or lower.

CPNI Classification for Security Products

Guidance, standards & evaluation for ...

- Automated access control
- Intruder detection
- Barriers
- Biometrics used in access control


CPNI/NPL Evaluation of Biometric Authentication for Automated Access Control Systems (AACS)

Use case

- Access to controlled area within site
- Biometrics as 2nd authentication factor
 - combined with prox card
 - independent of prox card
- Trusted administration staff
 - Attacker must impersonate a properly enrolled identity

Evaluation

- Evaluate biometric subsystem only
 - Security of dependent AACS system evaluated separately
 - Assure security at the same level as the rest of the AACS

CPNI Evaluation Standard for Biometric Access Control

1. Security-related functionality

- Admin & operator access: (i) Authenticated (ii) NOT at terminal
- Reference storage: (i) NOT in device at portal (ii) NOT on card
- Communications with AACS: (i) Protected (ii) Alert on tamper, spoof
- Check on installation

2. Biometric performance requirements

- FAR < 0.1% & requirements on FRR, FTE, Transaction times
- Scenario test

3. Attack resistance

- CPNI Grading depends on level of attack resistance
 - Spoofing
 - Tamper
 - -
- Practical assessment

Testing Attack Resistance

Variety of types of attack

- Zero-effort impostor e.g. targeting lookalike
- Fake finger, fake iris, ...
- Tamper
 - Remove from wall, Connect attacker's PC to terminal or AACS
- Exploiting poor quality enrolment, ...

Attack assumptions for the evaluation (based on use case)

- Attacker has obtained possession of a user's prox card
- User is known and accessible to acquire a biometric image
- Attacks to be made at same security settings as used in determining verification performance

Attack resistance

 System considered resistant to an attack if < 5% of attacks of that type succeed

Attack Levels of CPNI Grading System

		Resource level		
		Low	Medium	High
Skill & knowledge level		Domestic / High Street	Trade / Specialist	Bespoke
Low	None	1	2	3
Medium	Knowledge of Product / Techniques	2	4	5
High	Expert	3	5	6

CPNI Grading System

Attack Level	Protection System	
1 2	Base	
3	Enhanced	
4 5	High	
6		

Example Attack Levels: Fake Fingerprint

	Home / High St. resources	Trade / specialist supplier	Bespoke resource
Novice No special knowledge/skill		2	WWW.hdzxw.com
Knows product & techniques	2		5
Expert	3	5	6

Knowledge and Resource Requirements to Fake Fingerprints

Step		Resource	Knowledge/Skill
Acquire fingerprint image			
	Latent print	Low	Med
	Fingerprint scanner	Med	Low
	Generate from template		High
Make n	nould		
	Direct impression	Low-Med	Low
Engrave / etch from image	High	Low	
	Engrave / etch from image	Med	Med
Make fi	ngerprint artefact		
		Depends on material	Depends on mould
Presen	t artefact at terminal		
	Without practice		Low
	With practice & knowledge of device		Med-High
			12

Knowledge and Resource Requirements to Fake Iris

Step	Resource	Knowledge/Skill
Acquire iris image		
Camera phone / SLR	Low	Low
Iris camera	Med	Low
Generate from iriscode		High
Image enhancement/selection		Med - High
Reproduce iris image		
Print	Low	Low
Film	Low	Med
Contact Lens / Glass eye	High	High
Present fake eye(s) at terminal		
Without practice		Low
With practice & knowledge of device		Med

Example attack levels: Fake iris

	Home / High St. resources	Trade / specialist supplier	Bespoke resource
Novice No special knowledge/skill			3
Knows product & techniques			5
Expert	3	5	

4

General Findings: Liveness / Artefact Detection

Different methods of preventing use of fakes

- "Liveness/non-artefact" properties required to enable image capture
- Built in sensor measures properties associated with real characteristic
- Algorithmic processing of captured images

Choosing the setting for fake detection

- If enabled: Level of attack resistance generally higher
- Stricter settings: Reduced chance of successful attack (but not to 0)
 Can also significantly increase FRR

Successful attacks at level 3 & 4 (fingerprint)

- Finding "right" material for device catastrophe: all attacks succeed
- Tuning of methods attack success rate increases with experience
 - Sometimes indirect signal that a fake is detected

Our use case eliminates some of the easier spoofing attacks

E.g. recognition against an enrolled artefact

General Findings: Security Functionality & Tamper^{National Physical Laboratory} Protection

Many biometric terminals provide configuration options which would render the system less secure

- Door relay on device
- Templates stored on device on removable media
- Admin controls on device at portal for enrolment / disable spoof-detection

Better tamper protection often needed

Knowledge of product/techniques:

- Available on the internet (for the medium level attacker)
 - Tutorials on basic fake fingerprint attacks
 - Manuals for several biometric systems with details of e.g.:
 - tamper switch location
 - default passwords
 - Software for some systems

Issues in Evaluating Attack Levels

Sufficient coverage of types of attack at each level?

- Determined by expert review (incl. CPNI & Test Organisation)
- Difficulty to thoroughly test new/novel biometric modalities

Limits to what can be tested through real use:

- No skin transplants, or severed fingers in our evaluation
- Skill level of test personnel quickly increases from novice level as more attacks are made

Attacks get easier over time – need to review levels regularly

- New vulnerabilities are found
- Expert knowledge becomes available on internet
- Black market in helping people spoof systems
- Ways to exploit legitimate services e.g.
 - Mingpao Daily journalist successfully spoofed a biometrics device of the Hong Kong-China self-service immigration clearance channel with fingerprint produced by a HK\$110 <u>fingerprint cast kit</u> bought on Taobao,

Your Questions & Comments

Contact details for offline comment & questions

Tony.Mansfield@NPL.CO.UK