

Risk Aspects Related to Pipeline Transmission of CO2

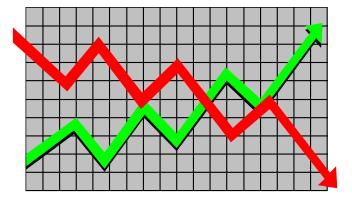
Workshop on Future Large CO2 Compression Systems Gaithersburg March 30-31, 2009

Hans A. Bratfos, Head of Section, Cleaner Energy Norway DNV Energy

What is this talk about?

Intro:

- About risk management
- About CCS
- About CO₂ pipeline transportation
- Risk aspects
 - Is CO₂ dangerous?
 - Concerns about CO2 transmission
 - Dispersion assessments


RISK and Rewards

No risk – no business

- Risk Management is to:
 - Understand and control the risks
 - Take the right risks
 - Balance risk and reward for *all* stakeholders

Opportunities

Risks

Risk management strategies

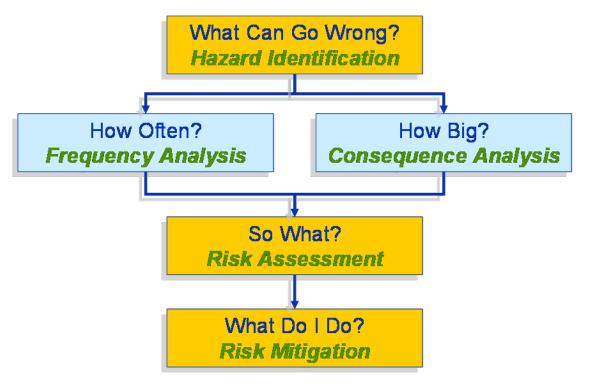
Complexity

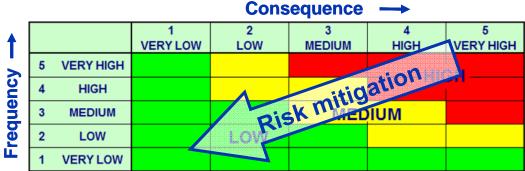
Quantitative Risk Assessment

Qualitative Risk Assessment

Codes and Procedures

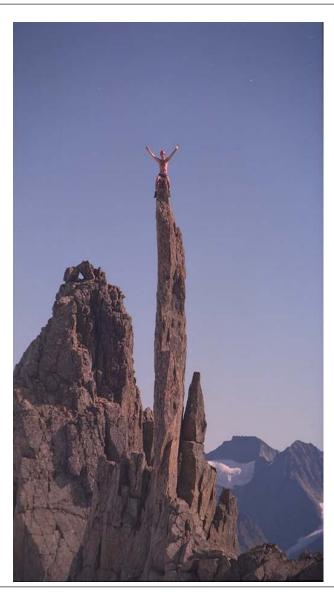
Rules and Regulations


- Prescriptive risk management
- Regulatory driven
- Repetitive technology


V.S.

- Analytical risk management
- Operator driven
- Evolving technology

The basic elements of risk assessment


Types of risks in CCS

- Political risks (incentives, future regulations, legal responsibilities)
- Commercial uncertainties (energy prices, value of CO₂, land rights)
- Reliability (new technologies, different medium)
- Safety risks (releases and dispersion)
- Environmental risks (releases and dispersion)

Risk acceptance

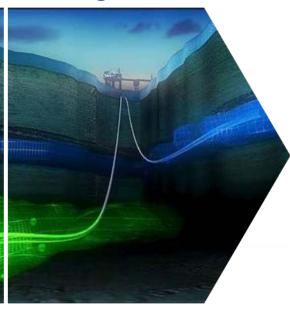
- Risk acceptance involves a subjective balancing of benefits with risks.
- Two people who may agree on the degree of risk involved may disagree on its acceptability.
- Environmental risks are linked to consequences of significance to the nature and the people using it.
- Environmental risk is thus a public concern
- The public can not always see the benefits of taking the risks

Two key challenges – for all of us

Need for energy

Climate change

Carbon Capture and Storage – The solution?


Capture

- Fossil power plants
- Natural Gas CO₂ reduction
- Other industrial processes

- Pipelines
- Ships

- Empty oil or gas reservoirs
- Saline aquifers
- Enhanced Oil Recovery

Transportation of Super Critical CO2

CO₂ Sources & Storage Areas

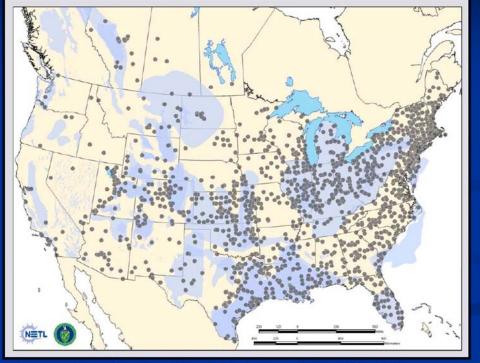
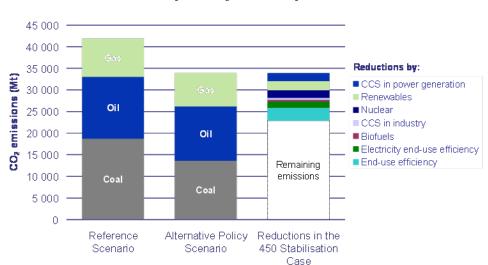
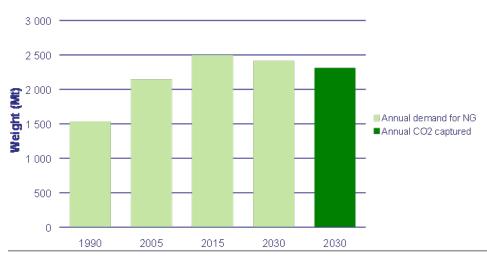


Image courtesy of Tim Carr, Natcarb Principal Investigator, DOE - NETL

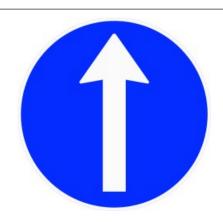

- The CO₂ sources and sinks are not all in geographical proximity.
- The need for pipelines for CCS may therefore be considerable

٠,

CO₂ pipelines – a booming industry?

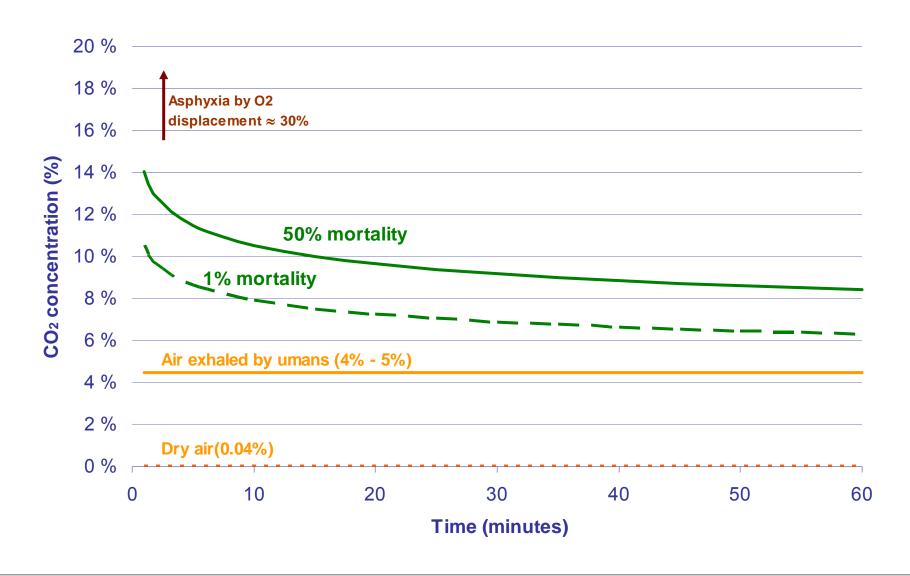


■ IEA's proposed mix of means to stabilize the CO₂ concentration in the atmosphere to 450 ppm by 2030 includes 2.3 Gt/year by CCS


CO2 captured by CCS by 2030 and projected demand for Natural Gas "450 Stabilisation Case"

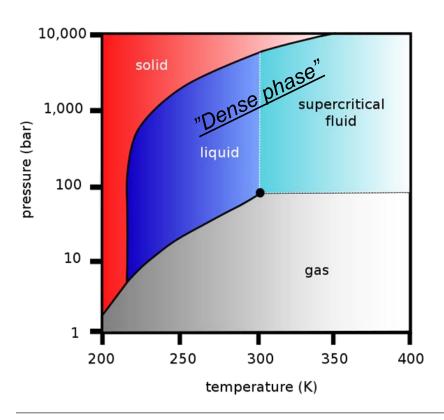
This would imply that the future amount of captured CO₂ will be in the same order of magnitude as today's natural gas production

CO_2 – A different risk exposure



- © CO₂ is inflammable
- © CO₂ is <u>not toxic</u> in normal concentration
- A single CO₂ release has <u>insignificant environmental</u> <u>impact</u>
- Other chemical constituents (as H₂S) carried in the CO₂ may harm people and the environment
- Concentrated CO₂ can displace oxygen and cause <u>asphyxia</u>
- Elevated CO₂ levels causes <u>neurological effects</u> ranging from flushed skin, muscle twitches and raised blood pressure to disorientation, convulsions, unconsciousness and death (IDLH¹⁾ level is set to 4%)
- CO₂ is <u>heavier than air</u> and may fill up sunken areas and confined spaces. <u>Safety zones</u> for NG can therefore not be adopted directly.

UK HSE Exposure Criteria



CO₂ – An enhanced risk exposure

- The future CO₂ pipeline infrastructure may become several hundreds times larger than today.
- The CO₂ will be transported in highly concentrated form at high pressure (dense phase)

- The need to locate CHP coal power plants near consumers implies that CO₂ pipelines will pass through more densely populated areas
- Thus, large populations will be exposed to a risk, which for them will be perceived as new

Concerns related to CO₂ transmission

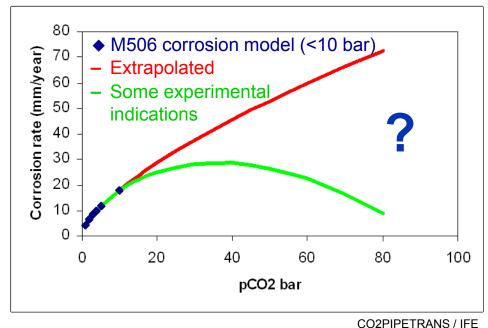
Root causes:

- Emergency blowdown of large dense phase inventories
- Accidental denting
- CO₂ corrosion leaks in case of accidental intake of water
- Material compatibility (elastomers, polymers)
- Ductile fracture_ ("un-zipping")

Consequences:

- Dispersion of concentrated CO₂
- Dispersion of toxic impurities
- Pipeline damage/downtime

Frequency Analysis



- The incident rate for onshore natural gas pipelines is ≈ 0.00008 km⁻¹ yr⁻¹ due to:
 - Corrosion (30%)
 - Third party (42%)
 - Design (7%)
 - Incorrect operation (13%)
 - Natural hazards (8%)
- The incident rate (from only 10 incidents) for CO₂ pipelines is ≈ 0.00032 km⁻¹ yr⁻¹ due to:
 - Corrosion (20%)
 - Third party(10%)
 - Relief valve failure (40%)
 - Weld/gasket/valve packing failure (30%)

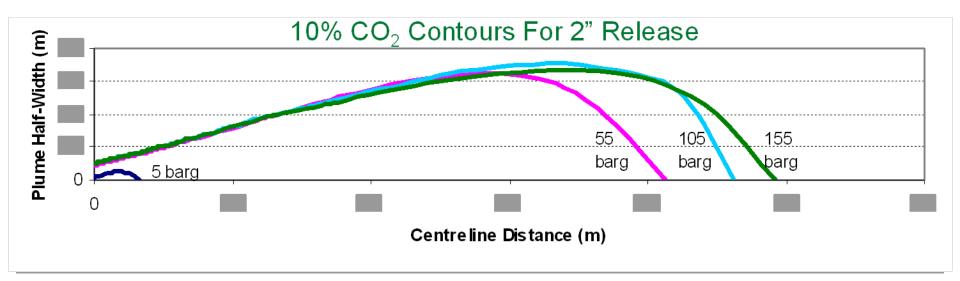
CO₂ corrosion

- CO_2 in free water phase creates carbonic acid $(CO_2 + H_2O \rightleftharpoons H_2CO_3)$ which is highly corrosive to C-Mn steels
- At high partial pressures of CO₂ the corrosion rates are expected to be dramatically higher than experienced for O&G pipelines
- We do not have models for predicting CO₂ corrosion rates which are valid for P>10 bar and T<20°C
- Experimental data for high pressure CO₂ are few
- We have little insight in the effect of impurities Mixtures of CO₂ streams from different sources makes the picture complex.

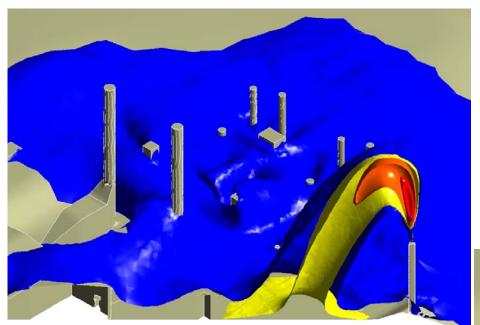
CO₂ corrosion

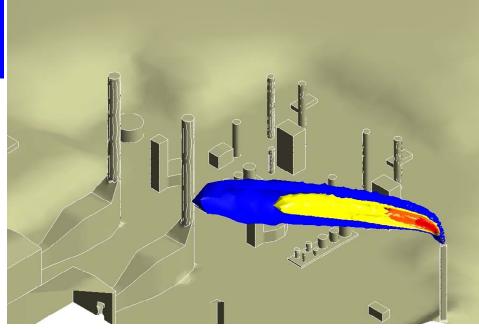
- Design basis:
 - Dehydration to ensure no formation of free water under any operational condition. (No corrosion allowance needed.)
- What if an accidental intake of humidity?
 - Can the pipeline be considered undamaged if the situation is quickly restored to normal?
 - Should/can the pipeline be inspected for corrosion damage?
 - What kind of monitoring is required?
- ⇒There is a need to understand more about corrosion rates in case of accidental intake of humidity

Consequence analyses: Dispersion modeling

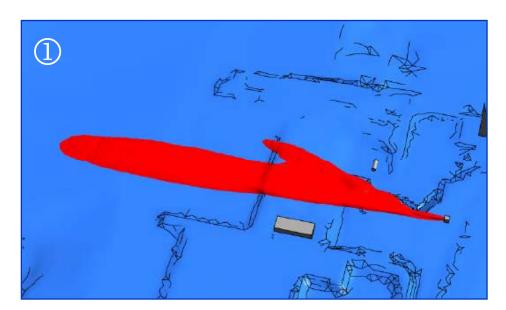

- Today's <u>software</u> for release and dispersion analyses are incomplete with respect to CO2
 - Phase transformations directly between gas and solid (deposition/sublimation)
- The calculations models have not been sufficiently validated by <u>large</u> scale experiments
- Proper understanding of CO₂ dispersion is essential to setting <u>safety</u>
 <u>zones</u> (land sequestration) and determine insurance liability

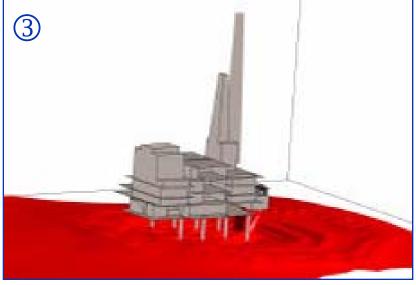
BP tests at Spadeadam in UK (DF1)

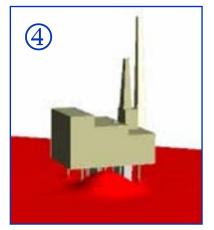


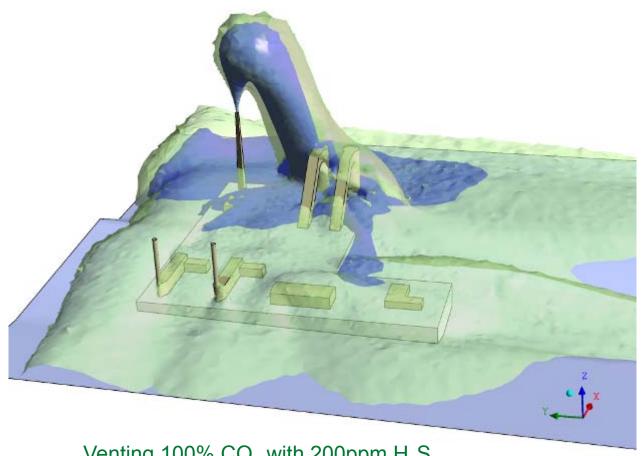


Dispersion Modelling Examples (1)





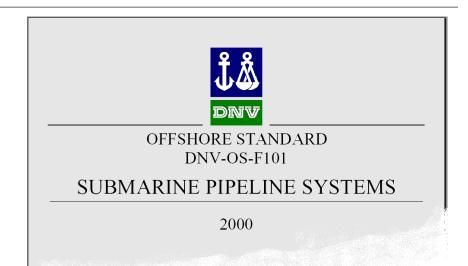

Dispersion Modelling Examples (2)



10% hazard range100 mm diameter pipeline150 barg pressure

- ① Onshore
- ② Underground
- 3 Underwater
- 4 Offshore platform

Dispersion Modelling Examples (3)


Venting 100% CO_2 with 200ppm H_2S at 416 tonnes/hr (10,000 Tonnes/day) through 36" vent with 0.5m/s wind. Blue isosurface = 0.5% CO_2 (LTEL) Green isosurface = 13ppm H_2S (odour threshold)

Approach:

Recommended Practice for design of CO₂ pipelines

- Existing pipeline design codes do not adequately address issues which are specific to CO₂ transmission
- DNV is developing a <u>Recommended</u> <u>Practice</u> (RP) for transportation of dense phase CO₂. together with 12 industry partners

- The RP will <u>supplement current design codes</u> such as ASME B31.8, ISO 13623, DNV OS-F101, API RP1111, BSI PD 8010, EN 14161, EN-1594.
- Phase 1:
 - A guideline incorporating current knowledge
 - To be issued in 2009
- Phase 2:
 - Investigations into selected knowledge gaps
 - A revised guideline within 2 3 years

RISK and Rewards

No risk – no business …

... but risks have to be managed!

Thank you!

www.dnv.com

© Det Norske Veritas AS. All rights reserved 09 April 2009 Slide 26