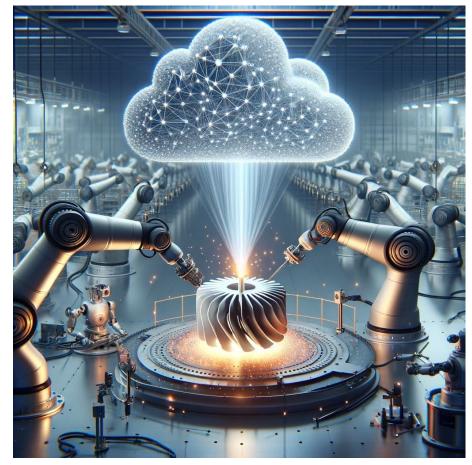


# DEMONSTRATING STANDARDS-BASED DIGITAL THREADS AT SCALE: CURRENT PROGRESS AT DAF MANTECH


WILLIAM "BILL" BERNSTEIN, PHD
TECHNICAL ADVISOR, DIGITAL MANUFACTURING & SUPPLY CHAIN BRANCH
MANUFACTURING AND INDUSTRIAL TECHNOLOGIES DIVISION (AFRL/RXMD)
APRIL 2024

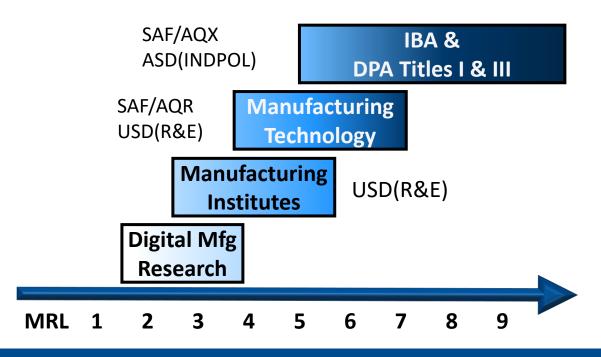


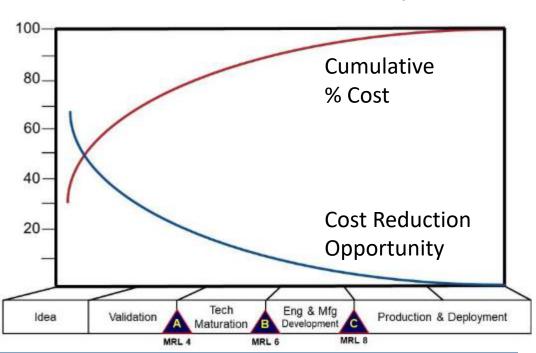


### Agenda

- Overview of Dept of the Air Force (DAF) ManTech
   Advanced Manufacturing Technology (AMT) Portfolio
- Ongoing Efforts Related to Model-Based Enterprise
  - Technical Data Modernization for As-Built Data
  - Open Digital Thread for Industrial Augmented Reality
- Looking Forward




\*Created by DALL-E






### AFRL/RXM | Manufacturing and Industrial Technologies Division

- Significant opportunity to realize cost savings by engaging with stakeholders early to promote manufacturable designs and ensure the industrial base will be ready to produce
- Responsive to acquisition programs across the development, production and sustainment lifecycle





### AFRL/RXM uniquely addresses manufacturing & industrial base challenges

across manufacturing development lifecycle

- across the spectrum of aerospace technology
- from process conception through full rate production
- for both acquisition and sustainment



### **Advanced Manufacturing Technologies**

Minimize cost and acquisition timelines through pervasive Industry 4.0 technologies lowering barriers between physical and digital assets in the Defense Industrial Base (DIB) and depots



2-10x more efficient DIB operations

#### Decision-Making Agility across Lifecycle

- Consistent Data Exchange
- -Efficient Commissioning for Manufacturing Assets
- -Governance and Provenance for Sensitive Data

#### Responsive and Agile Manufacturing Operations

- Rapid Turnaround in Depots
- Weapon System Availability
- Expanded Process Capability Envelope

#### Enabling Pervasive Transition

- Affordable Technology Insertion of New Processes
- Robust Robotic Agility in the Depots
- -Open, Modular, Standards-Based Architectures

#### Intuitive Human-Machine Cooperation

- -Situation Awareness in Austere Environments
- -Upskilling Operators, Maintainers, and Assemblers



# Advanced Manufacturing Technologies (AMT) portfolio responds to pervasive Industry 4.0 (or Smart Manufacturing) Investments.

Currently, AMT includes three ManTech programmatic foci:

#### **DIGITAL ENTERPRISE (DE)**

#### Thrusts:

- Digital Twin / Thread / Engineering
- Digital Supply Chain
- Moving Manufacturing Left

#### **Deliverables & Impacts:**

- Data governance for distributed manufacturing systems
- Controlled schema capture of supply chain activities
- Model-based consideration for manufacturing
- Templates for modernized technical data packages

Aligned with MxD MII



#### **ADDITIVE MANUFACTURING (AM)**

#### Thrusts:

- Affordability
- Transition Support
- AM at Scale

#### **Deliverables & Impacts:**

- Driving affordable processes and materials into practice
- Can print at the scale of critical DAF applications
- AM transitions with the ease of traditional processes

Aligned with America Makes MII

## AUTOMATION, ROBOTICS, & MIXED REALITY (ARMR)

#### Thrusts:

- Robotic Agility
   Robotic Mobility
- Multi-Robot, Multi-Human Teaming
- Advanced Process Visualization

#### **Deliverables & Impacts**:

- Robots that adapt to task, work piece, & environmental variability
- Robots that perform manufacturing processes in situ
- Systems of robots and humans that physically collaborate
- Visualization for process interaction

Aligned with ARM MII







### Automation, Robotics & Mixed Reality

#### **Manufacturing Vision**

DEVELOP, MATURE AND DELIVER AGILE, ADVANCED ROBOTS, XR-ENHANCED SYSTEMS FOR SEAMLESS INTEGRATION WITH DIGITAL DATA, AND SENSOR-BASED ADAPTIVE PROCESS CONTROL THAT WILL DECREASE COST AND IMPROVE MANUFACTURING PROCESSES THAT MEET DAF-SPECIFIC NEEDS

#### **Manufacturing Goals**

- AGILE, ADAPTABLE, REDEPLOYABLE, & FULLY
  RECONFIGURABLE MULTI-PURPOSE ROBOTS CAPABILITY
  PILOTED IN PRODUCTION ENVIRONMENT BY 2026
- XR-Enhanced Systems for Seamless Interaction WITH ROBOTS, PROCESSES, & DIGITAL DATA PILOTED IN PRODUCTION ENVIRONMENT BY 2027
- NATURAL HUMAN-MACHINE COLLABORATION FOR
   SENSING, COGNITION, & ACTION PILOTED IN PRODUCTION
   ENVIRONMENT BY 2028
- MULTI-AGENT AUTONOMOUS MOBILE ROBOTIC
   MANIPULATORS WITH SUPERVISED AUTONOMY AND
   INTELLIGENT TEAMING DEMONSTRATED IN SUSTAINMENT
   ENVIRONMENT BY 2028; FLIGHT LINE ENVIRONMENT 2029
- MANUFACTURING PROCESS INFORMATICS FOR UP- &
  DOWN-STREAM ADAPTIVE PROCESS CONTROL PILOTED IN
  PRODUCTION ENVIRONMENT BY (?)















### Digital Enterprise

#### **Manufacturing Vision**

A HIGHLY CONNECTED, DIGITALLY-ENABLED ACQUISITION AND SUSTAINMENT ENTERPRISE WITH IMPACTS TO DOWNSTREAM MANUFACTURING ACTIVITIES FULLY CHARACTERIZED AS EARLY AS POSSIBLE

#### **Manufacturing Goals**

Development, adaptation, and transition of digital technologies to improve manufacturing enterprise processes to transform connections to and from other parts of the lifecycle

- Demonstrate 50% reduction in "time to market" for defense products
- Increased participation in Defense marketplace for SMMs
- Greater efficiency and resiliency in production supply chains
- 10X increase in manufacturing decisions supported by simulation



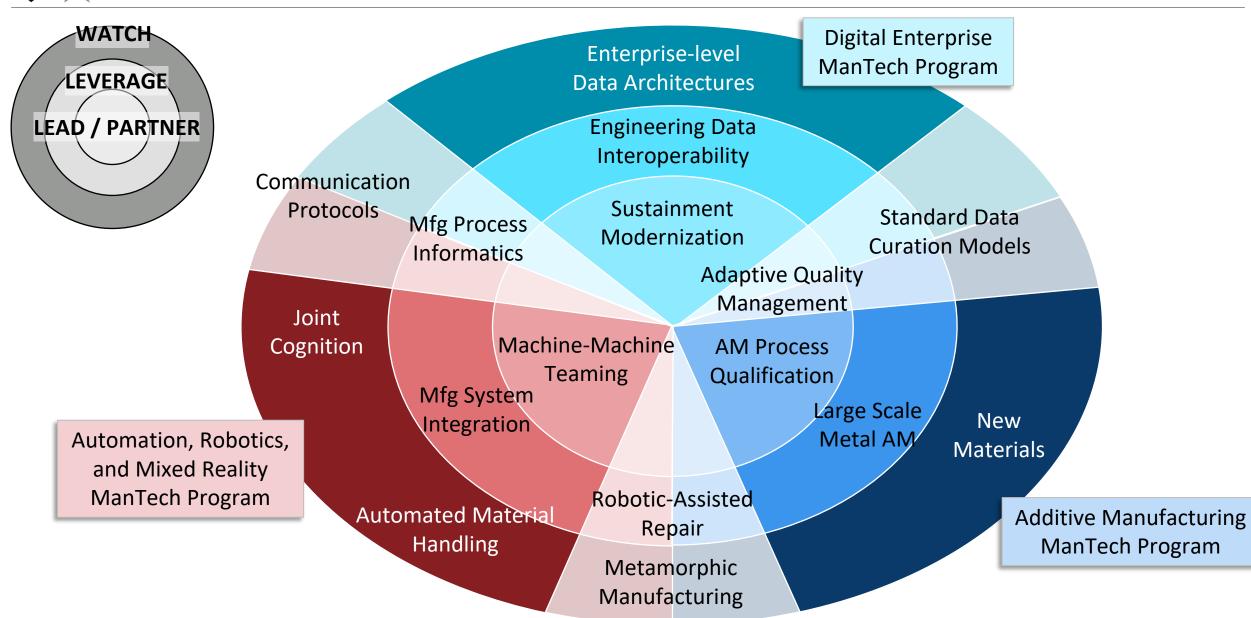




### Open Digital Thread / Twin

#### **Manufacturing Vision**

ADVANCE "OPEN" TECHNOLOGIES TO FORM "BASELINE" DIG TWIN/THREAD TOOLS/STANDARDS FOR MANUFACTURING, INCREASING INTEGRATION BETWEEN AF, SUPPLIERS, AND EXISTING DIGITAL THREAD/TWIN SOLUTIONS TO SUPPORT ENGINEERING, MANUFACTURING, AND LOGISTICS ANALYSES ACROSS THE LIFE CYCLE


#### **Manufacturing Goals**

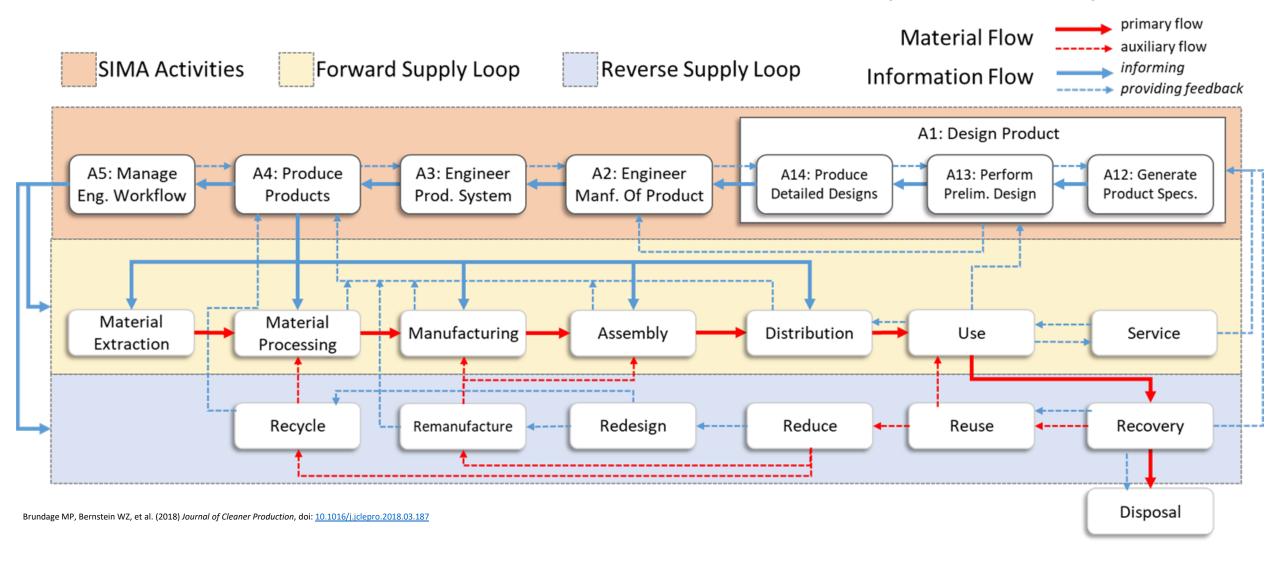
- Reduce time (~10x) it takes to verify technical requirements, specs, and physical parts
- Reduce time (~10x) it takes to resolve incident reports by having traceability throughout manufacturing process
- Predict and recommend solutions to quality issues for systems and subsystems. Improve quality X%


















### Information Complexities Across the Product System Lifecycle







### Industry 4.0 Standards Activities

### **Challenge:**

Harmonizing Industry 4.0 standards at scale









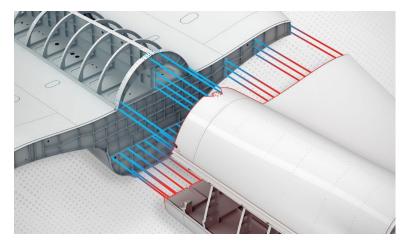








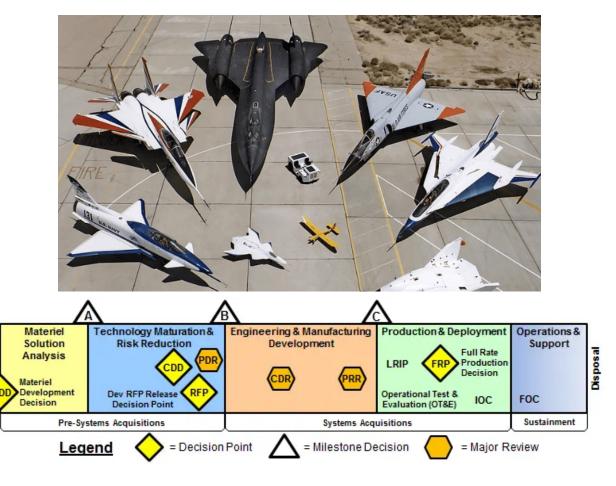





Lu, Y., et al., 2016. Current standards landscape for smart manufacturing systems. NIST, NISTIR, 8107.





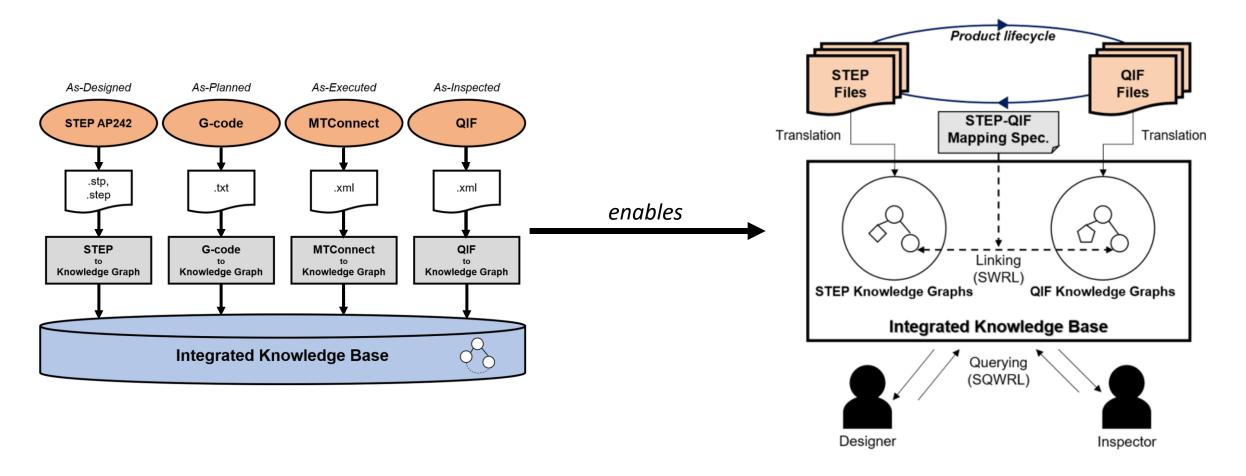

### Use Cases of (Particular) Interest



**Full-Sized Determinant Assembly (FSDA)** 



**Failure Analysis at Sustainment** 




**Acquisition Support / Data Rights** 





### Vision | Technical Data Modernization for As-Built Data



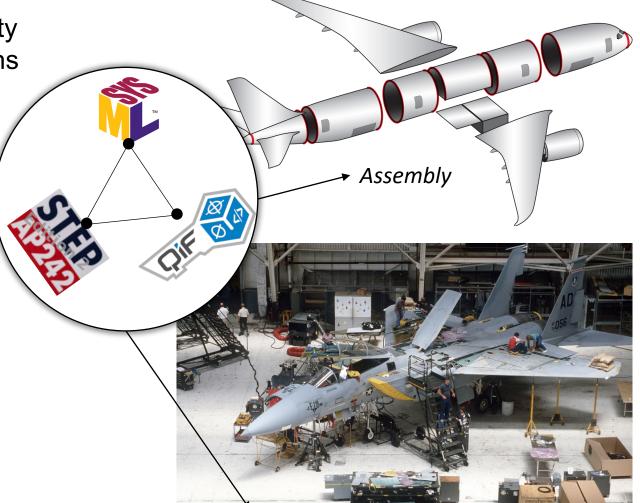


### (NEW!) Project: Technical Data Modernization for As-Built Data

 MBE standards have reached adequate maturity to warrant large-scale testing via demonstrations

 DAF-relevant assembly and sustainment activities would benefit from better data exchange practices

 DAF acquisition service requires guidance in how/what data to purchase up-front


Two use cases:

 Project 1: Advanced data linking of part/assembly asbuilt data to facilitate shim-less assembly

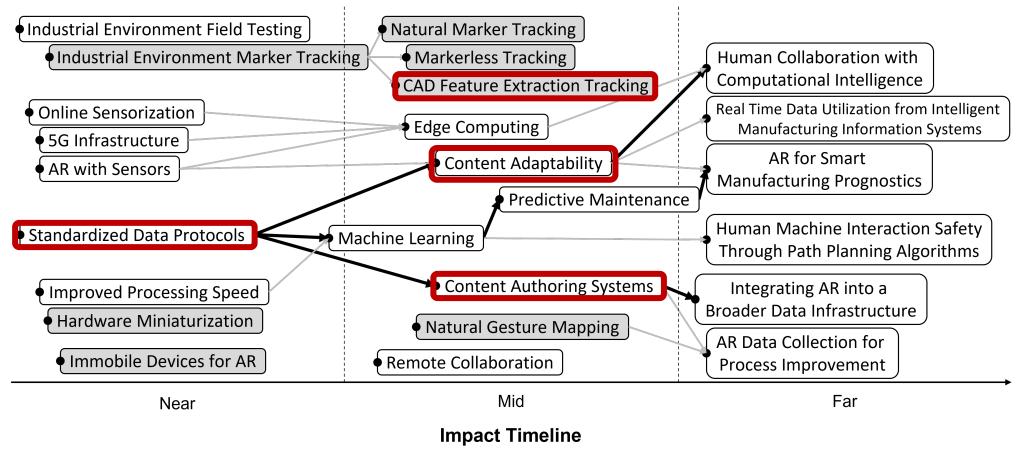
 Project 2: Better data curation for non-destructive inspection (NDI) in sustainment







Sustainment



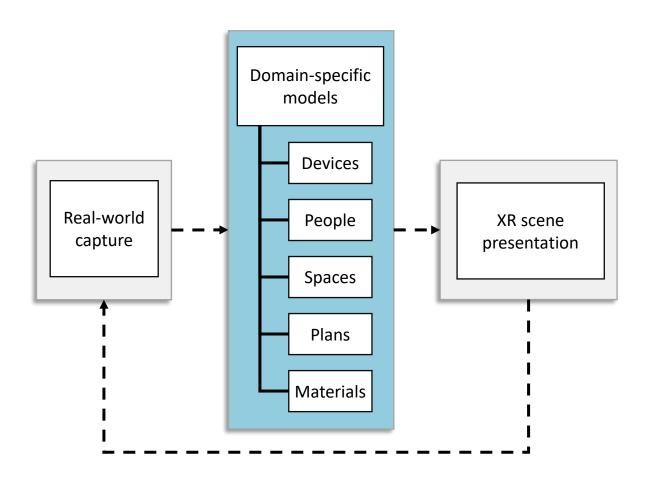







### How interoperability will impact Industrial Augmented Reality




Potential research and development opportunities for Industrial XR related to data-driven processes1

<sup>1</sup>Bernstein et al. (2024) ASME JCISE.





### Industrial AR suffers from interoperability challenges





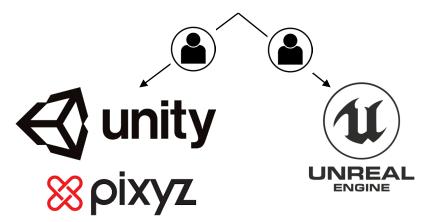
Lockheed Martin – Partner in FY22 AFRL RXM Discovery Award Emergent Visualization and Operations Software (EVOS) Team (photograph approved for public release by LMCO)



### Current solutions for Industrial AR development

### **Platform Lock-in**



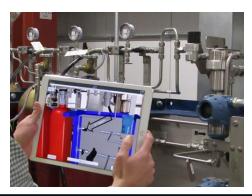


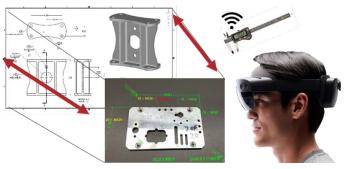

SIEMENS PLM SOFTWARE



### **Rely on 3<sup>rd</sup> Party Translators**

Digital Enterprise / CAx Standards





CAx – Computer Aided "X" Software





### Quality Control, Quality Assurance Companion (QQComp)











#### **DoD Problem**

- Inspection of complex systems is expensive (training, travel, expert personnel).
- Extended Reality (XR) improves efficiency for inspection. However, they suffer from a lack of interoperability between PLM systems and visualization modalities, e.g., headsets.
- Current technical data package (TDP) practices do not lend themselves to low-level mappings between authoritative design data and inspection reports.
- COTS toolkits do not adequately address automated instruction delivery.
- DoD depots and industrial base procure one-off XR apps, lacking scalability and agility.

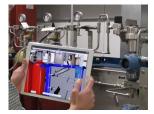
#### **Approach**

- Collaboration between DoD labs to create end-to-end, platform-agnostic, standards-based pipeline for presenting product manufacturing information (PMI) on 3D mesh models with a DoD-developed computer vision toolkit for automated work instruction delivery.
- Leverage NIST open-source software, e.g., STP2OWL, STP2X3D, STP-QIF integration
- Develop graph database schema to store standardized data, e.g., inspection and design.

#### **Warfighter Benefits/Impacts**

- Represents a collaboration across 4 DoD services, leveraging funds from OSD, OUSD, DLA, ERDC, AFRL, and NIST, with 7 support letters and 9 potential transitional partners: DLA, NAVSEA, NAVWAR, Warner Robins ALC, PEO Aviation, AFRL Rapid Sustainment Office, Pier Side Support Equipment, Strategic Systems Programs, and Missile Defense Agency
- Reduces time (-66%), human errors (-70%), and cost (-30%) for inspection and maintenance activities
- Government developed open-source software can be reused and shared by the larger community. QQComp has unlimited data rights to its deliverables.
- Implementing an end-to-end pipeline in the manufacturing process helps unify the process from product design through manufacturing to quality inspection translating into time and money savings.
- Broad collaboration builds relationships to best leverage XR-related R&D






### Goals of QQComp – Build Authoritative Models for AR

### Goal 1. Develop computer vision (CV) module to support instructional guide authoring for XR applications

- ✓ Define inspection and maintenance procedures in machine-readable format
- ✓ Develop CV toolkit for object recognition and view segmentation
- ✓ Relate CV module to XR-assisted inspection/maintenance app





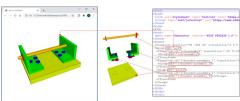
Task 1: Computer Vision Toolkit on Cloud

Demo: Automated XR presentation of instruction for inspection activity

#### Goal 3. Relate real-time inspection data to mesh model via QIF on the cloud

- ✓ Leverage open-source translators, e.g., XML2OWL Translator
- ✓ Build secure cloud-based QIF-compliant database
- ✓ Relay outcomes from measurement tools






Task 3: Real-time Inspection Data to Mesh on Cloud

Demo: Automated push of digital micrometer data to QIF database

### Goal 2. Enrich mesh representation w/ semantic Product Manufacturing Information (PMI) through knowledge graphs

- ✓ Leverage open-source translators, e.g., NIST STP2X3D Translator
- ✓ Improve and harden translators beyond NIST publications
- ✓ Collect and use DoD use cases









\Rightarrow Task 2: Mesh model w/ PMI on Cloud

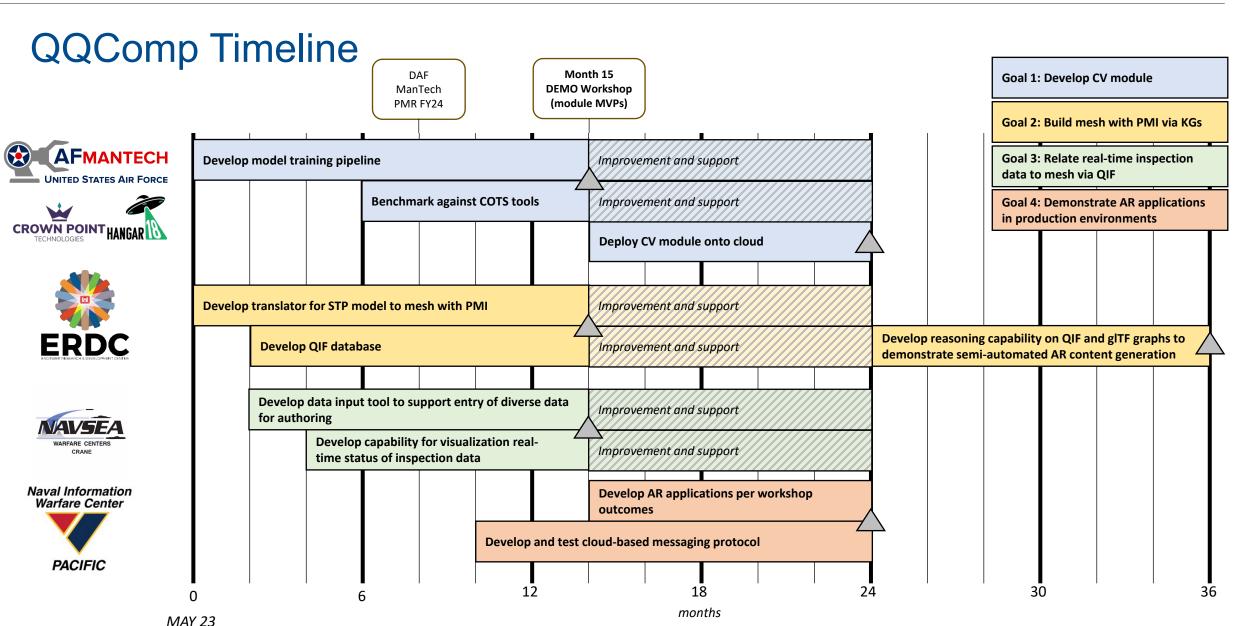
Demo: Semi-automated Translation of CAD to XR Model

#### **Goal 4. Demonstrate MRL 7 technology in a production environment**

- ✓ Package Task 1 and Task 2 in Unity3D application
- ✓ Deliver hardware with software running to transition partners
- ✓ Test and report on findings






Task 4: Test with Customer and Harden Tech

Demo: Remote update between at least 2 distributed teammates

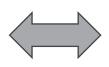


AIR FORCE RESEARCH LABORATORY

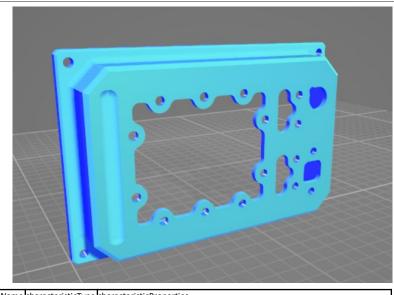









### Latest Progress on STP-QIF-gITF Pipeline

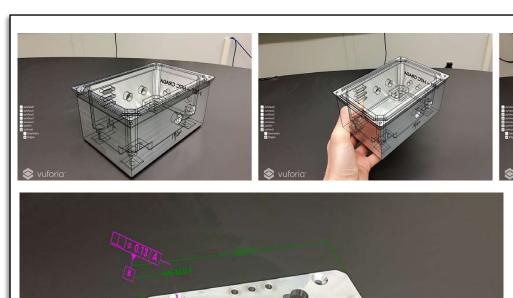


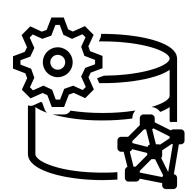


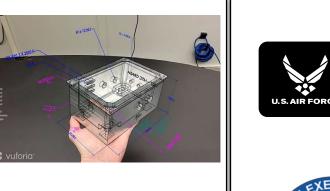








| characteristicItemUUID               | qifQPId                              | gltfUUID                             | gltfMeshName        | gltfMeshVertex                     | characteristicNominalName | characteristicType | characteristicProperties                                                    |
|--------------------------------------|--------------------------------------|--------------------------------------|---------------------|------------------------------------|---------------------------|--------------------|-----------------------------------------------------------------------------|
| 063472e0-4404-42cb-a970-a77376cdc6cc | 7e70734b-c21e-45e5-ae34-10e59b41605c | 7E9AFA65-3796-4E53-95B7-3D8239DB8F85 | SOLID [=>[0:1:1:2]] | [85.600000, 22.225000, 22.050000]  | Diameter3                 | Diameter           | {'Target Value': 4.5, 'Tolerance Maximum': 0.3, 'Tolerance Minimum': 0.3}   |
| 64e98270-098c-40b0-be8c-f930be8af208 | 7e70734b-c21e-45e5-ae34-10e59b41605c | 7E9AFA65-3796-4E53-95B7-3D8239DB8F85 | FACE [=>[0:1:1:6]]  | [120.100000, 25.554033, 22.050000] | Diameter4                 | Diameter           | {'Target Value': 4.5, 'Tolerance Maximum': 0.3, 'Tolerance Minimum': 0.3}   |
| c00eec5d-b95a-4db6-8a91-dd61912644f0 | 7e70734b-c21e-45e5-ae34-10e59b41605c | 7E9AFA65-3796-4E53-95B7-3D8239DB8F85 | FACE [=>[0:1:1:8]]  | [132.050000, 20.300000, 22.050000] | Diameter5                 | Diameter           | {'Target Value': 4.5, 'Tolerance Maximum': 0.3, 'Tolerance Minimum': 0.3}   |
| 8d178566-fb3e-492f-8fc4-1303e3c454b4 | 7e70734b-c21e-45e5-ae34-10e59b41605c | 7E9AFA65-3796-4E53-95B7-3D8239DB8F85 | FACE [=>[0:1:1:10]] | [152.400000, 99.600000, 0.000000]  | DistanceBetween1          | Curve Length       | {'Target Value': 5.5, 'Tolerance Maximum': 0.5, 'Tolerance Minimum': 0.5}   |
| 1e44a527-257d-4d1b-9756-f11cc25da28d | 7e70734b-c21e-45e5-ae34-10e59b41605c | 7E9AFA65-3796-4E53-95B7-3D8239DB8F85 | FACE [=>[0:1:1:12]] | [7.750000, 96.100000, 0.000000]    | Diameter2                 | Diameter           | {'Target Value': 4.5, 'Tolerance Maximum': 0.3, 'Tolerance Minimum': 0.3}   |
| 40fa268a-a462-4468-8db0-19e15153ff32 | 7e70734b-c21e-45e5-ae34-10e59b41605c | 7E9AFA65-3796-4E53-95B7-3D8239DB8F85 | FACE [=>[0:1:1:12]] | [7.750000, 96.100000, 0.000000]    | Position2                 | Position           | {'Tolerance': 0.25}                                                         |
| 8113a819-3464-4d32-a2c9-daa5b14fc5a5 | 7e70734b-c21e-45e5-ae34-10e59b41605c | 7E9AFA65-3796-4E53-95B7-3D8239DB8F85 | FACE [=>[0:1:1:14]] | [12.279936, 84.108868, 0.000000]   | DistanceBetween6          | Linear Distance    | {'Target Value': 25.1, 'Tolerance Maximum': 0.5, 'Tolerance Minimum': 0.5}  |
| 1b1b5d05-0db9-4720-a498-05873fffe99d | 7e70734b-c21e-45e5-ae34-10e59b41605c | 7E9AFA65-3796-4E53-95B7-3D8239DB8F85 | FACE [=>[0:1:1:14]] | [12.279936, 84.108868, 0.000000]   | Flatness1                 | Flatness           | {'Tolerance': 0.05}                                                         |
| 32cb5d20-b69e-47ea-871e-735e38d04b44 | 7e70734b-c21e-45e5-ae34-10e59b41605c | 7E9AFA65-3796-4E53-95B7-3D8239DB8F85 | FACE [=>[0:1:1:16]] | [8.350000, 84.421573, 25.050000]   | DistanceBetween6          | Linear Distance    | {'Target Value': 25.1, 'Tolerance Maximum': 0.5, 'Tolerance Minimum': 0.5}  |
| c1b6aac0-f676-4ea1-862c-2a69d66b5a3a | 7e70734b-c21e-45e5-ae34-10e59b41605c | 7E9AFA65-3796-4E53-95B7-3D8239DB8F85 | FACE [=>[0:1:1:18]] | [149.150000, 96.100000, 0.000000]  | Diameter2                 | Diameter           | {'Target Value': 4.5, 'Tolerance Maximum': 0.3, 'Tolerance Minimum': 0.3}   |
| 29167d27-3faa-458d-821c-7c8314a5e1dc | 7e70734b-c21e-45e5-ae34-10e59b41605c | 7E9AFA65-3796-4E53-95B7-3D8239DB8F85 | FACE [=>[0:1:1:20]] | [7.750000, 5.500000, 0.000000]     | Diameter2                 | Diameter           | {'Target Value': 4.5, 'Tolerance Maximum': 0.3, 'Tolerance Minimum': 0.3}   |
| 501bb9a0-a0e3-4491-8044-4cf714b3cd78 | 7e70734b-c21e-45e5-ae34-10e59b41605c | 7E9AFA65-3796-4E53-95B7-3D8239DB8F85 | FACE [=>[0:1:1:22]] | [28.600000, 36.512500, 22.050000]  | Diameter3                 | Diameter           | {'Target Value': 4.5, 'Tolerance Maximum': 0.3, 'Tolerance Minimum': 0.3}   |
| d72b1ea7-09bc-4233-b7ce-0b485a69bbeb | 7e70734b-c21e-45e5-ae34-10e59b41605c | 7E9AFA65-3796-4E53-95B7-3D8239DB8F85 | FACE [=>[0:1:1:24]] | [28.600000, 65.087500, 22.050000]  | Diameter3                 | Diameter           | {'Target Value': 4.5, 'Tolerance Maximum': 0.3, 'Tolerance Minimum': 0.3}   |
| 168a48ca-0616-4b1e-85b4-2ac5072c6a08 | 7e70734b-c21e-45e5-ae34-10e59b41605c | 7E9AFA65-3796-4E53-95B7-3D8239DB8F85 | FACE [=>[0:1:1:26]] | [41.600000, 79.375000, 22.050000]  | Diameter3                 | Diameter           | {'Target Value': 4.5, 'Tolerance Maximum': 0.3, 'Tolerance Minimum': 0.3}   |
| 584dc975-126d-4bcf-b2cb-31070ea2077d | 7e70734b-c21e-45e5-ae34-10e59b41605c | 7E9AFA65-3796-4E53-95B7-3D8239DB8F85 | FACE [=>[0:1:1:28]] | [63.600000, 79.375000, 22.050000]  | Diameter3                 | Diameter           | {'Target Value': 4.5, 'Tolerance Maximum': 0.3, 'Tolerance Minimum': 0.3}   |
| ffe9a91f-ed8e-40ae-b41a-cfa1f4bcb8be | 7e70734b-c21e-45e5-ae34-10e59b41605c | 7E9AFA65-3796-4E53-95B7-3D8239DB8F85 | FACE [=>[0:1:1:30]] | [85.600000, 79.375000, 22.050000]  | Diameter3                 | Diameter           | {'Target Value': 4.5, 'Tolerance Maximum': 0.3, 'Tolerance Minimum': 0.3}   |
| 888bb9b0-7ed9-4c8d-ab4b-c26d41a86303 | 7e70734b-c21e-45e5-ae34-10e59b41605c | 7E9AFA65-3796-4E53-95B7-3D8239DB8F85 | FACE [=>[0:1:1:32]] | [98.600000, 65.087500, 22.050000]  | Diameter3                 | Diameter           | {'Target Value': 4.5, 'Tolerance Maximum': 0.3, 'Tolerance Minimum': 0.3}   |
| 60a147d0-26f9-4ee1-bf14-568f0e0c0186 | 7e70734b-c21e-45e5-ae34-10e59b41605c | 7E9AFA65-3796-4E53-95B7-3D8239DB8F85 | FACE [=>[0:1:1:34]] | [98.600000, 36.512500, 22.050000]  | Diameter3                 | Diameter           | {'Target Value': 4.5, 'Tolerance Maximum': 0.3, 'Tolerance Minimum': 0.3}   |
| e97acaaf-fe79-4268-9cbd-6b70e7add910 | 7e70734b-c21e-45e5-ae34-10e59b41605c | 7E9AFA65-3796-4E53-95B7-3D8239DB8F85 | FACE [=>[0:1:1:36]] | [63.600000, 22.225000, 22.050000]  | Diameter3                 | Diameter           | {'Target Value': 4.5, 'Tolerance Maximum': 0.3, 'Tolerance Minimum': 0.3}   |
| 5c410c43-296d-410e-8b41-09493c7b7709 | 7e70734b-c21e-45e5-ae34-10e59b41605c | 7E9AFA65-3796-4E53-95B7-3D8239DB8F85 | FACE [=>[0:1:1:38]] | [41.600000, 22.225000, 22.050000]  | Diameter3                 | Diameter           | {'Target Value': 4.5, 'Tolerance Maximum': 0.3, 'Tolerance Minimum': 0.3}   |
| bdc08514-08d5-447b-bb61-1da3fc3ecde5 | 7e70734b-c21e-45e5-ae34-10e59b41605c | 7E9AFA65-3796-4E53-95B7-3D8239DB8F85 | FACE [=>[0:1:1:40]] | [120.100000, 41.045967, 22.050000] | Diameter4                 | Diameter           | {'Target Value': 4.5, 'Tolerance Maximum': 0.3, 'Tolerance Minimum': 0.3}   |
| 635f21e2-3005-4ada-b325-8c9b30a64511 | 7e70734b-c21e-45e5-ae34-10e59b41605c | 7E9AFA65-3796-4E53-95B7-3D8239DB8F85 | FACE [=>[0:1:1:42]] | [120.100000, 60.554033, 22.050000] | Diameter4                 | Diameter           | {'Target Value': 4.5, 'Tolerance Maximum': 0.3, 'Tolerance Minimum': 0.3}   |
| 9ea720ce-e4cb-4a3d-8e1b-5c6ea8a38982 | 7e70734b-c21e-45e5-ae34-10e59b41605c | 7E9AFA65-3796-4E53-95B7-3D8239DB8F85 | FACE [=>[0:1:1:44]] | [120.100000, 76.045967, 22.050000] | Diameter4                 | Diameter           | {'Target Value': 4.5, 'Tolerance Maximum': 0.3, 'Tolerance Minimum': 0.3}   |
| 67f40b1a-00e7-4730-a15e-448c2d05bf5d | 7e70734b-c21e-45e5-ae34-10e59b41605c | 7E9AFA65-3796-4E53-95B7-3D8239DB8F85 | FACE [=>[0:1:1:46]] | [132.050000, 43.800000, 22.050000] | Diameter5                 | Diameter           | {'Target Value': 4.5, 'Tolerance Maximum': 0.3, 'Tolerance Minimum': 0.3}   |
| 67c9f66b-0dd4-468e-ba32-f377839deb65 | 7e70734b-c21e-45e5-ae34-10e59b41605c | 7E9AFA65-3796-4E53-95B7-3D8239DB8F85 | FACE [=>[0:1:1:48]] | [150.400000, 0.000000, 0.000000]   | DistanceBetween2          | Curve Length       | {'Target Value': 5.5, 'Tolerance Maximum': 0.5, 'Tolerance Minimum': 0.5}   |
| 2038e906-17ee-4abe-98fd-f2247cf1dedc | 7e70734b-c21e-45e5-ae34-10e59b41605c | 7E9AFA65-3796-4E53-95B7-3D8239DB8F85 | FACE [=>[0:1:1:48]] | [150.400000, 0.000000, 0.000000]   | DistanceBetween3          | Linear Distance    | {'Target Value': 101.6, 'Tolerance Maximum': 0.2, 'Tolerance Minimum': 0.2} |
| 54a16b20-4a3c-404a-b39d-ec846ca9ef6e | 7e70734b-c21e-45e5-ae34-10e59b41605c | 7E9AFA65-3796-4E53-95B7-3D8239DB8F85 | FACE [=>[0:1:1:50]] | [2.000000, 101.600000, 0.000000]   | DistanceBetween3          | Linear Distance    | {'Target Value': 101.6, 'Tolerance Maximum': 0.2, 'Tolerance Minimum': 0.2} |






### Transition Workshop and MVP Demonstrations (07 AUG 2024)

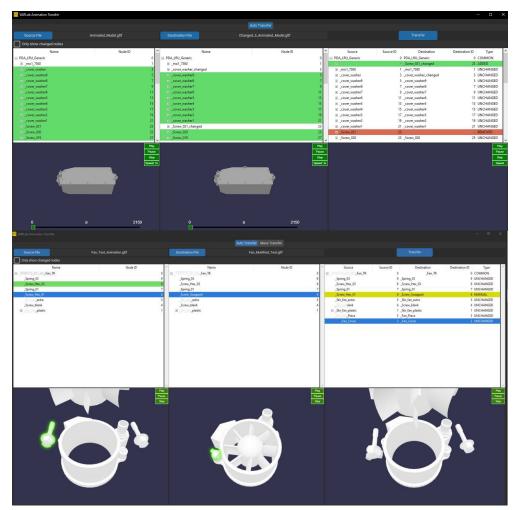




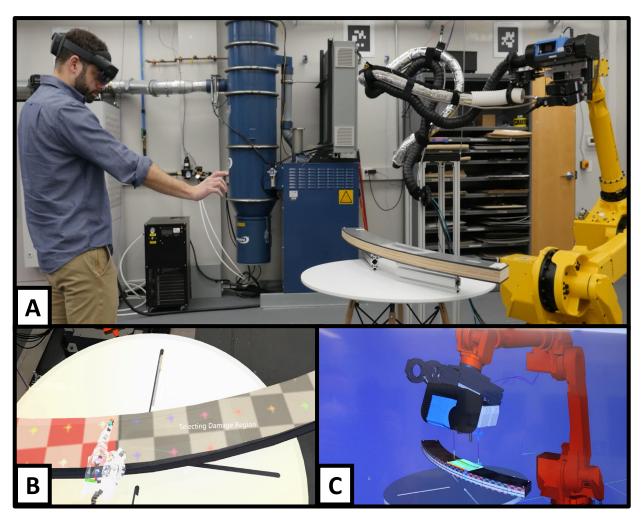













### Other Examples of Interoperability-Related Projects for Industrial AR



Content resuse/adaptability for animations



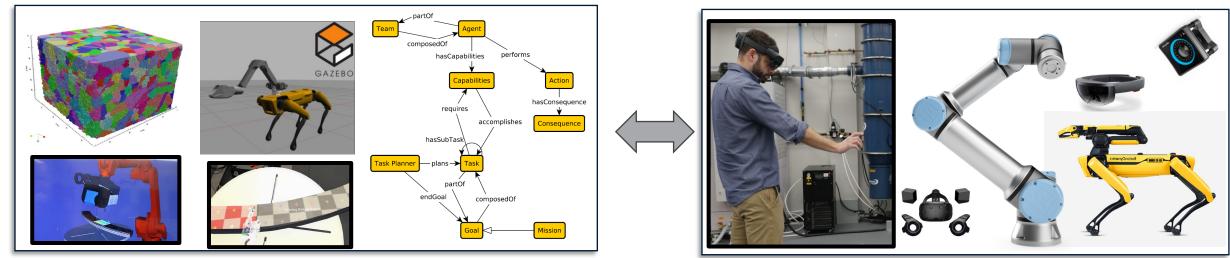
Process planning for robot-assisted manufacturing










### Plans Forward – Both ManTech and Internal Research

- Leverage Joint Defense ManTech Panel (JDMTP) Advanced Manufacturing Enterprise (AME) Subpanel to work cross service technical data modernization
- DAF ManTech support technical data initiatives and help proliferate best practices across defense industrial base (e.g., low tier suppliers) and **organic industrial base**
- Continue to support and demonstrate manufacturing innovations across technology readiness level (TRL) spectrum





#### Collaborative Automation for Manufacturing Systems (CAMS) Lab coming soon!





## 

WWW QUESTIONS?