

## Development of thermodynamic and kinetic databases for Ti/TiAl-based alloys

Hai-Lin Chen, Yang Yang, Ying Tang, Qing Chen, Anders Engström

The 2017 Diffusion Workshop

www.thermocalc.com

September 11-12, 2017, NIST, USA

## **Project Ti/TiAl**



### **Objectives: thermodynamic & kinetic databases for**

- Ti-based alloys ( $\alpha$ Ti,  $\beta$ Ti,  $\alpha$ + $\beta$ )
- γ-TiAl-based alloys
- Alloys based on  $Al_3Ti$ ,  $\alpha_2$ -AlTi<sub>3</sub>, ...



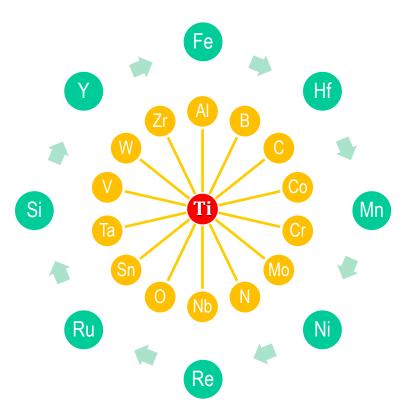
## **Challenges**

- Complex equilibria: a relatively large number of phases; large solutions, difficult to make reliable extrapolations
- Extremely complex transformations, e.g.  $\beta/\alpha'/\alpha''$ ,  $\alpha/\gamma$ ,  $\beta/\omega''/\omega$ /ordered  $\omega s$ ,  $\gamma/DO_{22}$
- Binary & ternary systems (Ti/Zr/Hf/V/Nb/Ta/Mo/W): phase boundaries sensitive to parameters/energy; theoretical calculations do not help
- Susceptible to the impurity contamination, some systems lacking reliable experimental data

## **Project Ti/TiAl**

## **Strategies**

- A systematic plan and development
- Start with a relatively large (23 element) framework
- Systems selected & prioritized based on a thorough consideration...
- Model selections prior to the assessments


### Assessments

3/35

- Quick review > review > modeling/extrapolation > validation
- Aided by high-throughput DFT calculations



- **TCTI1: 23** elements, 236 binaries, 71 ternaries
- MOBTI2: liquid, Bcc\_A2, Hcp\_A3, AlTi\_L10



### **TCTI1 - systems**



| Ti | Al | В | С | Со | Cr | Fe | Hf | Mn | Мо | N | Nb | Ni | 0 | Re | Ru | Si | Sn | Ta | V | W | Y | Zr |
|----|----|---|---|----|----|----|----|----|----|---|----|----|---|----|----|----|----|----|---|---|---|----|
| Al | 2  | 2 | 2 | 2  | 2  | 2  | 2  | 2  | 2  | 2 | 2  | 2  | 2 | 2  | 2  | 2  | 2  | 2  | 2 | 2 | 2 | 2  |
| В  | 3  | 2 | 2 | 2  | 2  | 2  | 2  | 2  | 2  | 2 | 2  | 2  | 2 | 2  | 2  | 2  | 2  | 2  | 2 | 2 | 2 | 2  |
| С  | 3  |   | 2 | 2  | 2  | 2  | 2  | 2  | 2  |   | 2  | 2  |   | 2  | 2  | 2  |    | 2  | 2 | 2 | 2 | 2  |
| Co | 3  | 3 | 3 | 2  | 2  | 2  | 2  | 2  | 2  |   | 2  | 2  | 2 | 2  | 2  | 2  | 2  | 2  | 2 | 2 | 2 | 2  |
| Cr | 3  | 3 | 3 |    | 2  | 2  | 2  | 2  | 2  | 2 | 2  | 2  | 2 | 2  | 2  | 2  | 2  | 2  | 2 | 2 | 2 | 2  |
| Fe |    |   |   |    | 3  | 2  | 2  | 2  | 2  | 2 | 2  | 2  | 2 | 2  | 2  | 2  | 2  | 2  | 2 | 2 | 2 | 2  |
| Hf |    |   |   |    |    |    | 2  | 2  | 2  |   | 2  | 2  | 2 | 2  | 2  | 2  |    | 2  | 2 | 2 | 2 | 2  |
| Mn | 3  |   |   |    | 3  |    |    | 2  | 2  | 2 | 2  | 2  | 2 | 2  | 2  | 2  | 2  | 2  | 2 | 2 | 2 | 2  |
| Mo | 3  | 3 | 3 | 3  | 3  |    |    |    | 2  | 2 | 2  | 2  | 2 | 2  | 2  | 2  |    | 2  | 2 | 2 | 2 | 2  |
| Ν  | 3  |   |   |    | 3  |    |    |    | 3  | 2 | 2  | 2  |   |    |    | 2  |    | 2  | 2 | 2 |   | 2  |
| Nb | 3  | 3 | 3 |    | 3  |    |    |    | 3  | 3 | 2  | 2  | 2 | 2  | 2  | 2  | 2  | 2  | 2 | 2 | 2 | 2  |
| Ni |    | 3 |   |    |    |    |    |    |    |   | 3  | 2  | 2 | 2  | 2  | 2  | 2  | 2  | 2 | 2 | 2 | 2  |
| 0  | 3  |   |   |    |    |    |    |    |    |   |    |    | 2 | 2  | 2  | 2  | 2  | 2  | 2 |   | 2 | 2  |
| Re |    |   |   |    |    |    |    |    |    |   |    |    |   | 2  | 2  | 2  |    | 2  | 2 | 2 | 2 | 2  |
| Ru |    |   |   |    |    |    |    |    |    |   |    |    |   |    | 2  | 2  | 2  | 2  | 2 | 2 | 2 | 2  |
| Si | 3  |   |   |    |    |    |    |    | 3  |   |    |    |   |    |    | 2  | 2  | 2  | 2 | 2 | 2 | 2  |
| Sn | 3  | 3 |   | 3  | 3  |    |    |    | 3  |   | 3  | 3  |   |    |    |    | 2  |    | 2 |   |   | 2  |
| Та | 3  | 3 | 3 | 3  | 3  |    |    |    | 3  | 3 | 3  |    |   |    |    |    |    | 2  | 2 | 2 | 2 | 2  |
| V  | 3  | 3 | 3 |    | 3  | 3  |    |    | 3  |   | 3  |    |   |    |    |    | 3  | 3  | 2 | 2 | 2 | 2  |
| W  | 3  | 3 | 3 |    | 3  |    |    |    | 3  |   | 3  |    |   |    |    | 3  |    | 3  | 3 | 2 | 2 | 2  |
| Y  |    |   |   |    |    |    |    |    |    |   |    |    |   |    |    |    |    |    |   |   | 2 | 2  |
| Zr | 3  | 3 | 3 |    | 3  |    |    |    | 3  |   | 3  |    |   |    |    |    | 3  | 3  | 3 | 3 |   | 2  |



| 4 | / | 3 | 3 | 5 |
|---|---|---|---|---|
|   |   |   |   |   |

## Highlights

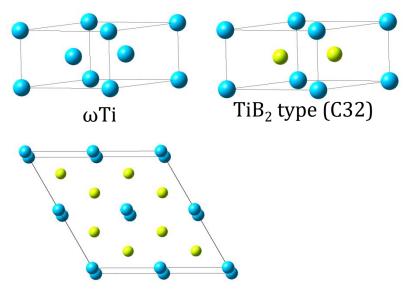


- Thermodynamic + kinetic databases
- TCTI1 + MOBTI2

□ for Ti alloys & TiAl-based alloys and more

## In TCTI1

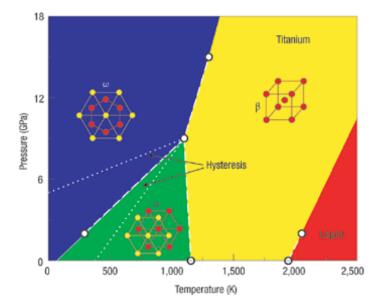
- Only a few ternaries taken from literature
- To include all the stable phases and important metastable phases in each assessed system
- α, β, β<sub>0</sub>, γ, α', <del>α''</del>
- 01 and 02
- Borides, silicides, carbides
- ω, <u>ω</u>, ordered variants of ω


### What is the ω phase?



### A metastable structure of Ti

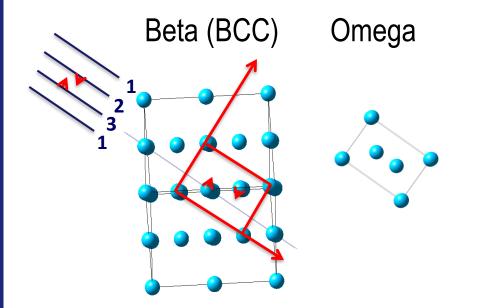
**hP3, P6/mmm** 1a (0 0 0)


2b (2/3 1/3 1/2) (1/3 2/3 1/2)



1a: a graphite-like net2b: a hexagonal configuration

# either cause brittleness or strengthen alloys


### **Stable under high pressures** or near 0 K



 Can be "stabilized" in binary or higher-order systems by solutionizing or ordering

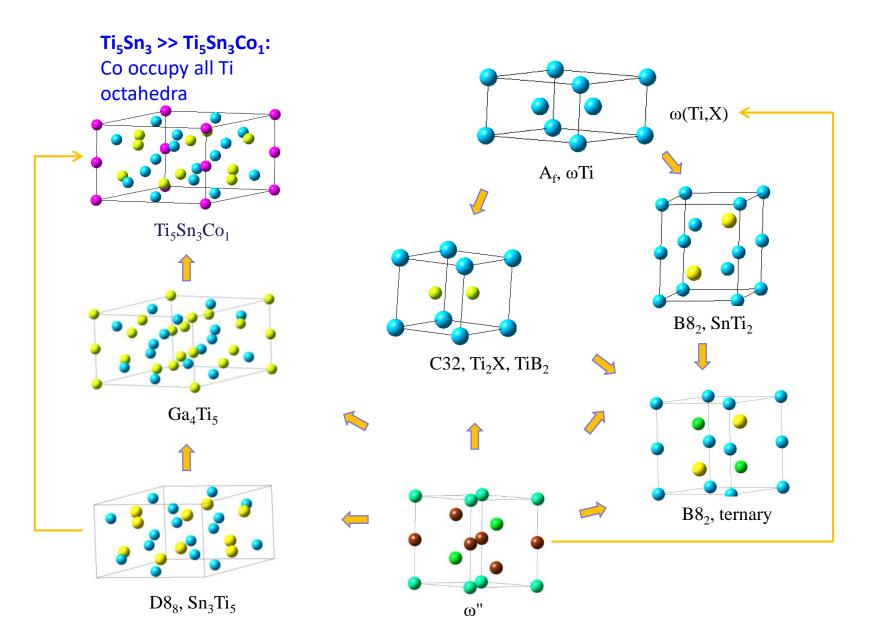
### **ω collapse**





- $[-111]\beta \rightarrow [0001]\omega$  $(111)\beta \rightarrow (0001)\omega$  $[110]\beta \rightarrow [10-10]\omega$
- A pure shuffle transformation No macroscopic shape strain Bendersky (1990)

$$c_{\omega} = \frac{\sqrt{3}}{2}a_{\beta}$$
,  $a_{\omega} = \sqrt{2}a_{\beta}$ 


7/35

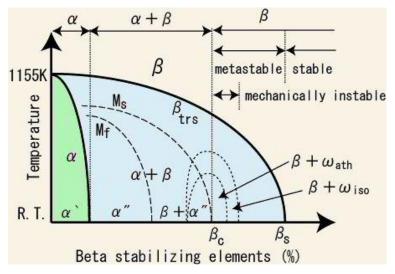
### **Δ** Accompanying the ω collapse

- Shape change (c/a), e.g. 0.6082
   for ωTi, vs 0.6124 (shuffled)
- Atomic diffusion and rearrangement (ordering)
- The parent phase may be ordered
- Translational structures, ω', ω''
- Lacking experimental data, while theoretical calculations are difficult
- Partially ordered B2
- $\circ$  Partially collapsed  $\omega$ "
- Partially ordered B8<sub>2</sub>

### $\omega$ -related structures






### **ω-related structures**

### "Athermal ω"

- o transformed from the parent phase via a displacive mechanism
- o deformation-induced
- o during quenching
- Long-distance diffusion suppressed
- Ordering possible?

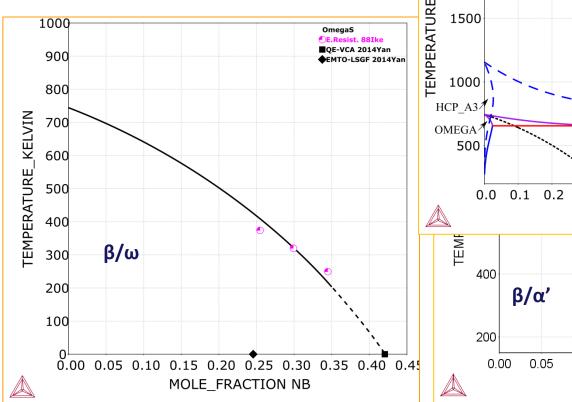
### "Isothermal ω"

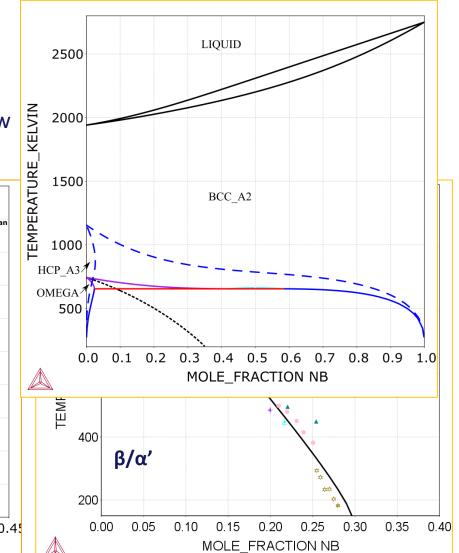
- Forming during aging
- More or less ordered
- C32, B8<sub>2</sub> or more complex structures.
- "ω<sub>0</sub>"
- B8<sub>2</sub>, not necessarily.





### $\omega$ solution and C32

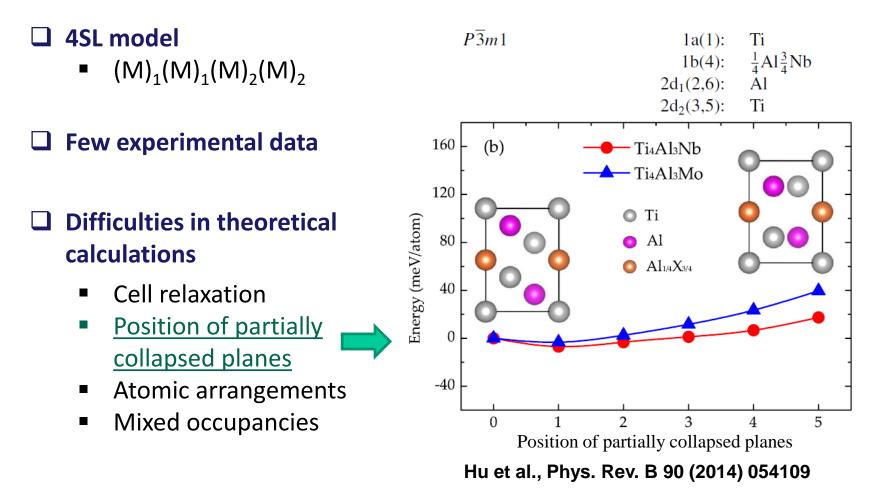




| P6/mmm, hP3                                                                                      | Separately modelled                                         |                                                                                                                                                |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| ω solution                                                                                       | Ti <sub>2</sub> X                                           | TiB <sub>2</sub>                                                                                                                               |  |  |  |  |  |
| A <sub>f</sub> *<br>2b Ti<br>1a Ti<br>(Ti, X) <sub>1</sub>                                       | C32<br>2b Ti<br>1a X<br>(Ti) <sub>2</sub> (X,) <sub>1</sub> | C32<br>2b B<br>1a Ti<br>(B,) <sub>2</sub> (Ti,) <sub>1</sub>                                                                                   |  |  |  |  |  |
| <ul> <li>Ti-Mo</li> <li>Ti-Nb</li> <li>Ti-Ta</li> <li>Ti-V</li> <li>Ti-Sn-V</li> <li></li> </ul> | <ul> <li>Rarely reported<br/>in Ti alloys</li> </ul>        | $\circ$ $AlB_2$ $\circ$ $CrB_2$ $\circ$ $MnB_2$ $\circ$ $MoB_2$ $\circ$ $NbB_2$ $\circ$ $TaB_2$ $\circ$ $TiB_2$ $\circ$ $YB_2$ $\circ$ $ZrB_2$ |  |  |  |  |  |

### ω solution: Ti-Nb



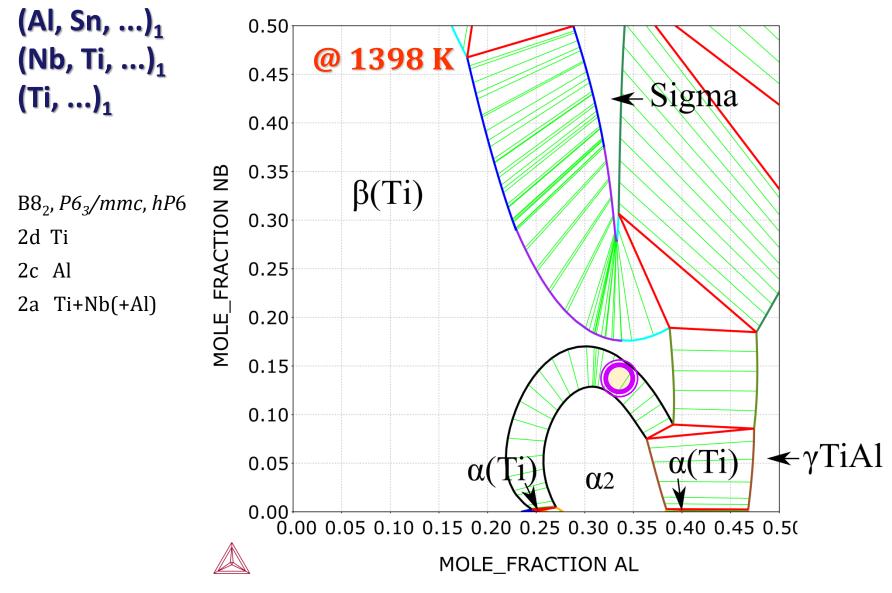
- Martensitic transformation
- T0-line
- Ti-Al/Zr: (As + Af)/2 or (Ms + Mf)/2
- Ti-Fe/Mo/Nb/V: very narrow window





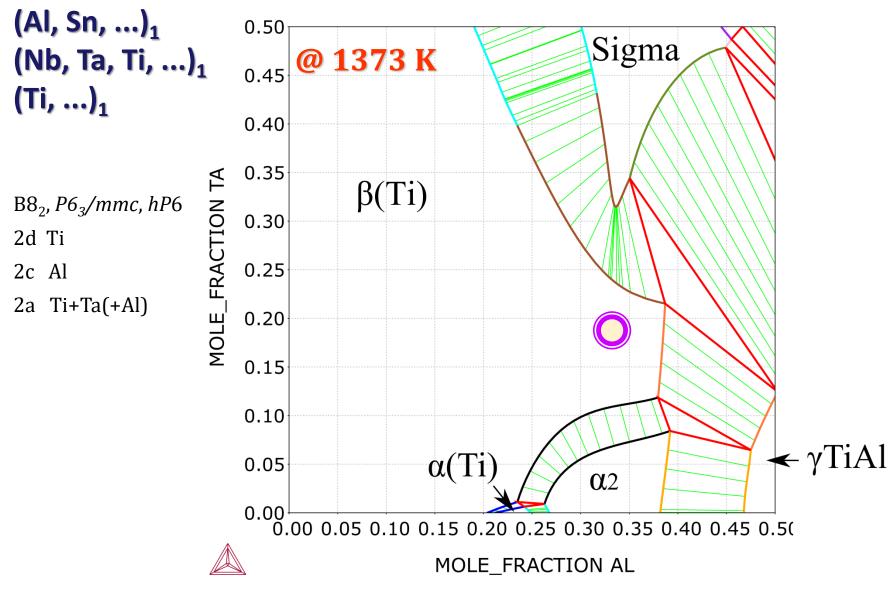

Jiayi Yan et al., PhD thesis, 2014

ω"





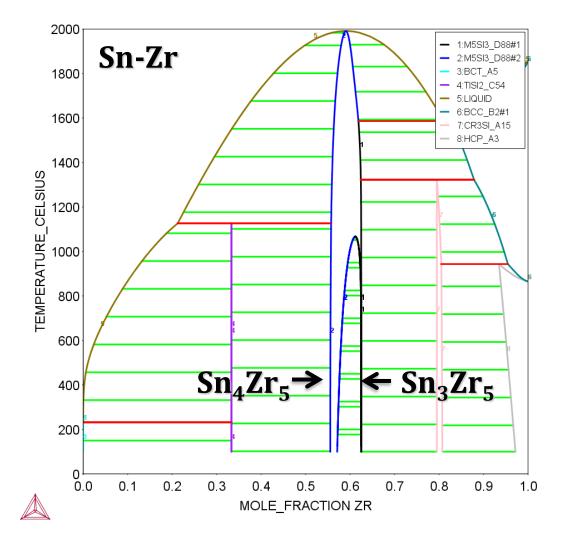

However, site occupancies and c/a ratio must be changed as well, in order to find the minimal.


### Al-Nb-Ti B8<sub>2</sub>



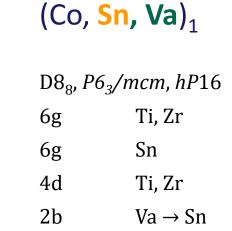


### Al-Ta-Ti B8<sub>2</sub>






## D8<sub>8</sub> & Ga<sub>4</sub>Ti<sub>5</sub>-type


(Cr, Fe, Hf, Ti, **Zr**)<sub>2</sub> (Al, **Sn**, Si)<sub>3</sub> (Cr, Fe, Hf, Ti, **Zr**)<sub>3</sub> (Co, **Sn, Va**)<sub>1</sub>

| D8 <sub>8</sub> , <i>P6<sub>3</sub>/mcm</i> , <i>hP</i> 16 |                     |  |  |  |  |  |
|------------------------------------------------------------|---------------------|--|--|--|--|--|
| 6g                                                         | Zr                  |  |  |  |  |  |
| 6g                                                         | Sn                  |  |  |  |  |  |
| 4d                                                         | Zr                  |  |  |  |  |  |
| 2b                                                         | $Va \rightarrow Sn$ |  |  |  |  |  |

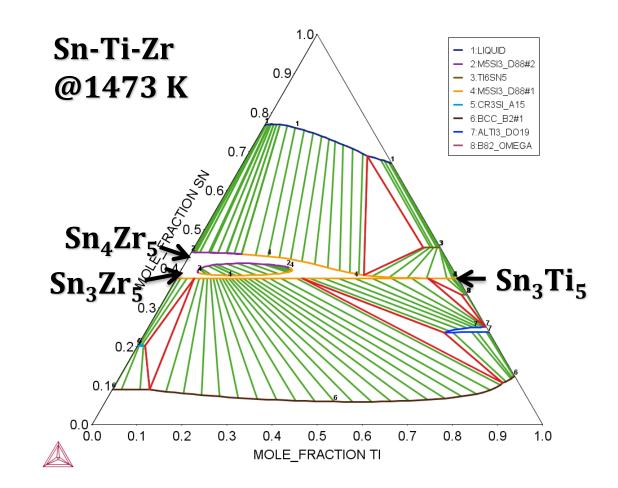




15/35



(Al, **Sn**, Si)<sub>3</sub>


D8<sub>8</sub> & Ga<sub>4</sub>Ti<sub>5</sub>-type

(Cr, Fe, Hf, Ti, Zr)<sub>2</sub>

(Cr, Fe, Hf, **Ti**, **Zr**)<sub>3</sub>

16/35





Extrapolated Sn-Ti-Zr isothermal section at 1473 K

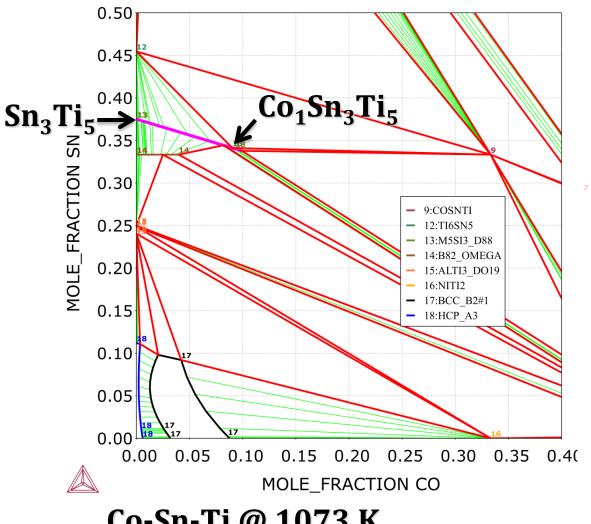
## D8<sub>8</sub> & Ga<sub>4</sub>Ti<sub>5</sub>-type

(Cr, Fe, Hf, **Ti**, Zr)2 (Al, **Sn**, Si)<sub>3</sub> (Cr, Fe, Hf, Ti, Zr)3 (Co, Sn, Va)<sub>1</sub>

D8<sub>8</sub>, *P6*<sub>3</sub>/*mcm*, *hP*16

Ti

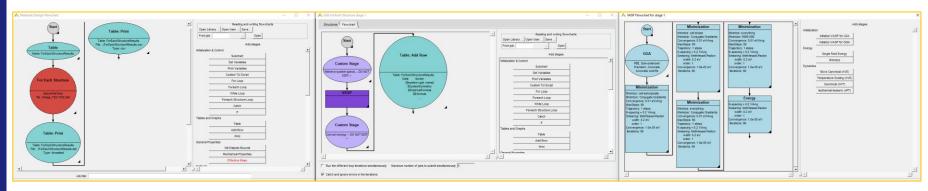
| -0 |                     |
|----|---------------------|
| 6g | Sn                  |
| 4d | Ti                  |
| 2b | $Va \rightarrow Co$ |


6g

17/35

### Ti<sub>5</sub>Sn<sub>3</sub>Co<sub>x</sub> (x=0-1) at 870 and 1070 K

Yu. Stadnyk, L. Romaka, A. Horyn, A. Tkachuk, Yu. Gorelenko, P. Rogl, J. Alloys Compd. 387 (2005) 251.


#### 0.05 17 0.00 0.10 0.15 0.00 0.05 MOLE\_FRACTION CO Co-Sn-Ti @ 1073 K





## HT DFT calculations VASP + MedeA flowcharts





### **Stoichiometric compounds**

- □ (Partly) disordered compounds
- Calculation of end-members
- Calculation with supercells

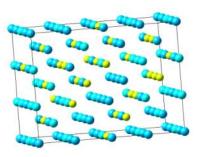
### Binary solid solutions

- SQSs (Special quasirandom structures)
- CPA (Coherent potential approximation)

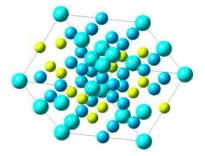
### Ternary solid solutions

SSOSs (a small set of ordered structures)

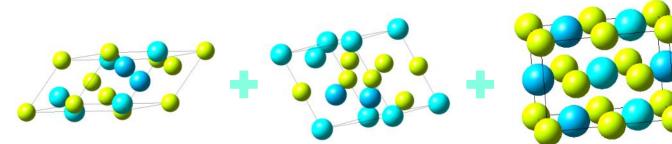
## **High throughput DFT calculations**




### **Accuracy & Efficiency**


- SQSs (Special quasirandom structures)
- SSOSs (a small set of ordered structures) Jiang & Uberuaga (2016)

### Supercells $\rightarrow$ SQSs $\rightarrow$ SSOSs


- higher efficiency
- comparable accuracy



96 atom Supercell Several different supercells are needed.



32 atom SQS



SSOSs Ti<sub>2</sub>AlV

Jiang (2016): SSOSs for ternary Fcc\_A1, Bcc\_A2, Hcp\_A3, e.g. *№* 

### **HT DFT calculations**

#### $\omega$ , pure elements

• Al, B, C, Co, Cr, Cu, Fe, Hf, Mn, Mo, Nb, Ni, Pd, Pt, Re, Ru, Si, Ta, Ti, V, W, Y, Zr

#### $\boldsymbol{\omega}$ , ordered structures

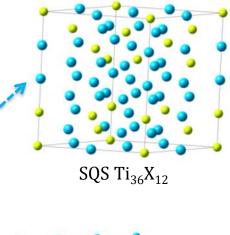
- C32 and  $B8_2$
- $Ti_2X + TiX_2$

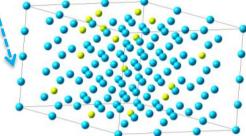
#### ω Ti-X

- SQS Ti36X12
- Supercell  $Ti_{96}X_{12}$ ,  $Ti_{81}X_{27}$ ,  $Ti_{54}X_{54}$  for  $X \neq Z$
- Supercell Ti<sub>96</sub>X<sub>12</sub>, Ti<sub>81</sub>X<sub>27</sub>, for Z=Cr, Mo, Nb, Ta, V, W

#### A2 Ti-X

- SQS @ 25, 50, 75 at.% X
- Supercell @ 25, 50 at.% X


#### A3 Ti-X


- SQS @ 25 at.% X
- Supercell @ 25, 50, 75 at.% X

#### Other structures (only for systems calculations are necessary)

- Complex intermetallics
- Partly ordered compounds
- Ternary solid solutions



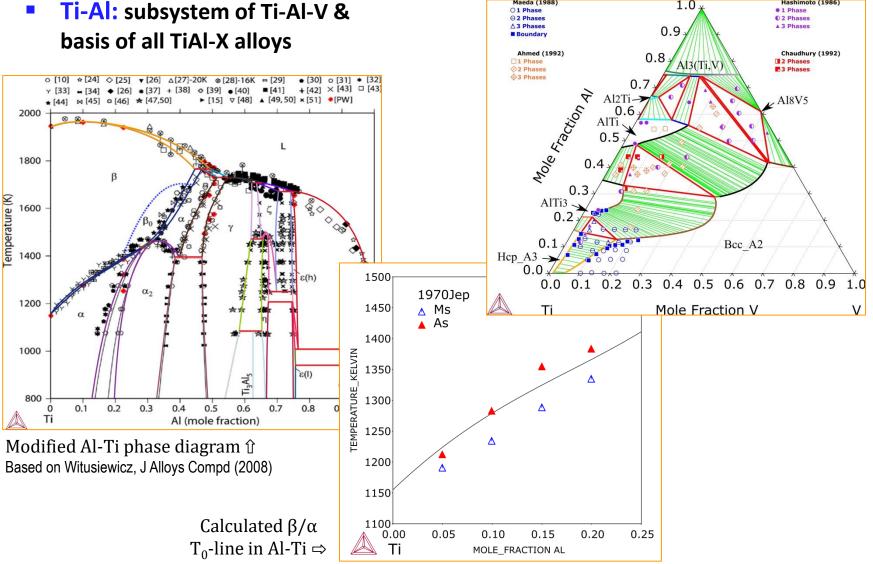




Supercell  $Ti_{96}X_{12}$ 108 (3 × 3 × 4)

## **Calculations**

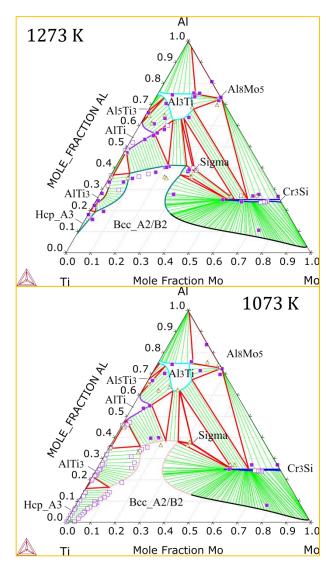
21/35




Hashimoto (1986)

- **Ti-Al-V:** the most important titanium alloy system
- **Ti-Al:** subsystem of Ti-Al-V & basis of all TiAl-X alloys

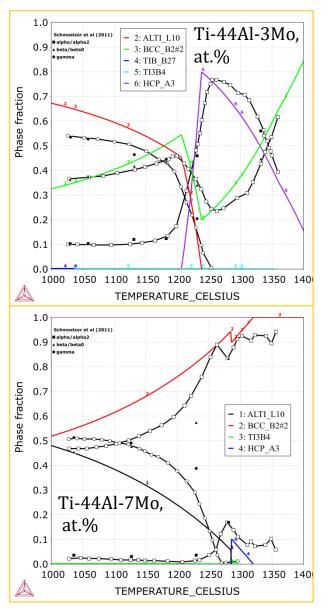
Al-Ti-V isothermal section at 1073 K I


Maeda (1988)



### **Calculations**

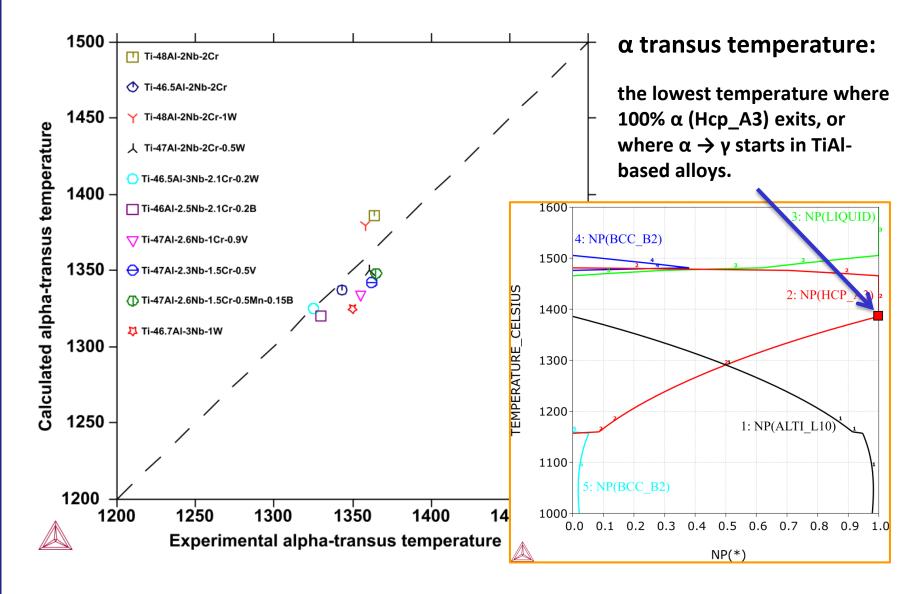



### Ti-Al-Mo: important Ti-Al system



22/35

⇐ ∠ Mainly based
 on phase equilibria
 @ 1073, 1173, 1273,
 1373, 1473 K from
 Huang (2017)


Non-equilibrium data from synchrotron by Schmölzer (2011) for comparison only ⇔⊅



### Validations



### Typical Multicomponent Ti-Al alloys







## **MOBTI2**

### Atomic mobility database for Ti/TiAl based alloys

| Ti | AI | В  | С  | Со | Cr | Hf | Fe | Mn | Мо | Ν  | Nb |
|----|----|----|----|----|----|----|----|----|----|----|----|
| Ni | 0  | Sn | Si | Та | Re | Ru | V  | W  | Υ  | Zr |    |

### **23** elements

- □ 4 phases: LIQUID, BCC\_A2, HCP\_A3, ALTI\_L10
- **20** binary systems (5 for LIQUID, 14 for BCC\_A2, 1 for ALTI\_L10)
- **7** ternary systems (3 for BCC\_A2, 4 for ALTI\_L10)

Note: MOBTI2 is compatible and recommended for use in combination with the TCTI1

## Models



## Modeling Strategy for Liquid Phase

- Difficult to measure due to convection and microgravity ٠
- Limited experimental data ٠

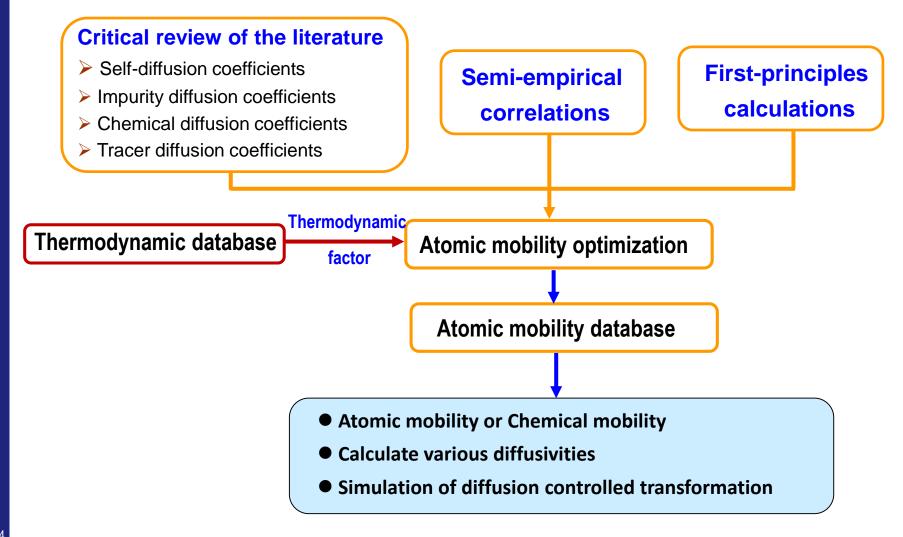
**Case 1:** With experimental data --- Critical assessment

**Case 2:** No experimental data --- Estimate by modified Sutherland equation

Modified Sutherland equation

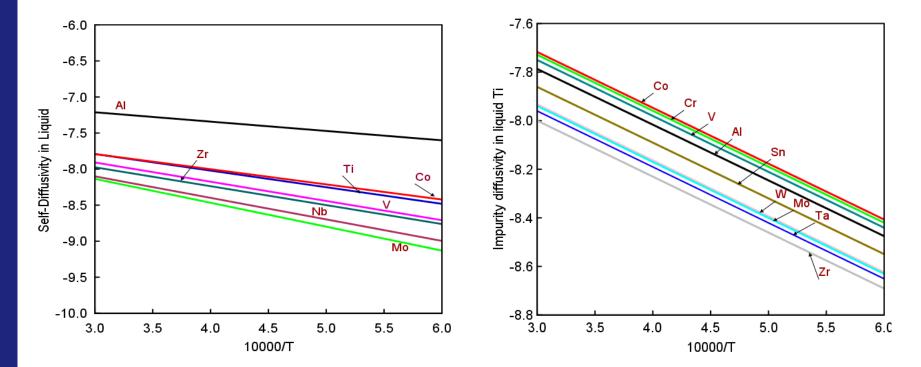
Self- and impurity diffusion coefficients in liquid phase

$$D = \frac{k_B T}{6 \pi \mu r} \left( \frac{1 + \frac{2 \mu}{\beta r}}{1 + \frac{3 \mu}{\beta r}} \right)^{-1} k_B, \text{ Boltzmanns constant}$$
$$\mu_i = C_1 \frac{M_i^{1/2}}{V_i^{2/3}} T^{1/2} \exp(C_2 \frac{T_i^m}{T}) \quad r_i(T) = 0.644 \times 10^{-8} (\frac{M_i}{\rho_i^m})^{1/3} (1 - 0.112 \sqrt{\frac{T}{T_i^m}}) \quad \beta = \left\{ \begin{array}{l} 0(r_A \le r_B) \\ \infty(r_A > r_B) \end{array} \right\}$$


Kaptay's viscosity formula **Proptopapas's effective radius equation Sliding friction coefficient** 

W.M. Chen, L.J. Zhang, Y. Du et al., Philosophical Magazine 94 (2014) 1552-1577

## **Models**




## □ Modeling Strategy for Solid Phase -- BCC, HCP & ALTI\_L10



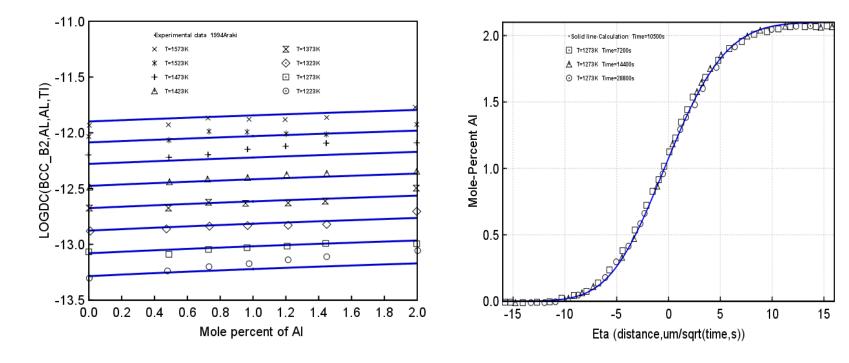
## Liquid Phase

### Self-diffusivities



**Fig. 1** Summary presently calculated self-diffusivities in liquid phase.

**Fig. 2** Summary presently calculated impurity diffusivities in liquid Ti.


Impurity diffusivities





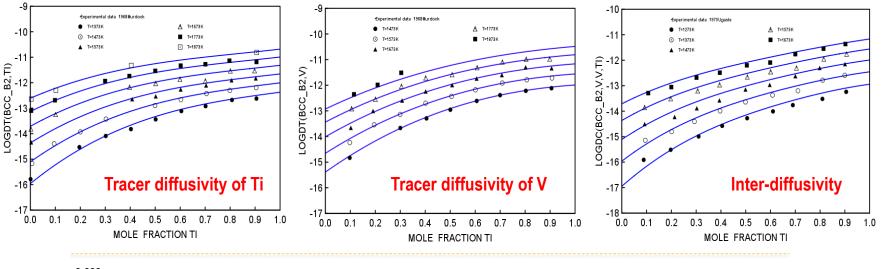
## **BCC\_A2** Phase

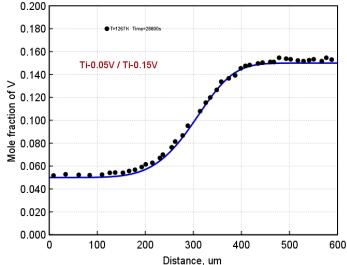
### Al-Ti binary system



**Fig. 5** Calculated interdiffusivities in BCC Al-Ti alloys.

**Fig. 6** Simulated concentration profile of Al in BCC Ti/Ti-0.021Al diffusion couple.


*Experiments from:* H. Araki, et al., Metall. Mater. Trans. A. 25A (1994) 874-876. D. Goold, Inst. Met., 88 (1959) 444-448.


29/34



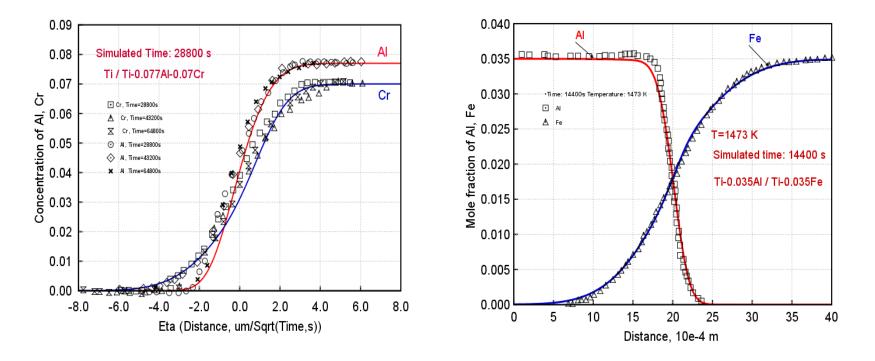
### **BCC\_A2** Phase

### Ti-V binary system





**Fig. 7** Simulated concentration profile of V in BCC Ti-0.05V//Ti-0.15V diffusion couple.


#### **Experiments from:**

- J. Murdock et al., Acta Metall. 16 (1968) 493-500.
- Y. Ugaste, et al., Fiz. Metal. Metalloved 40 (1975) 567-575.
- W. Sprengel, et al., Def. Diff. Forum 143-147 (1997) 431-436.



## **BCC\_A2** Phase

### Ti-AI-Cr ternary system



Ti-Al-Fe ternary system

**Fig. 8** Simulated concentration profile compared with experimental data (a) Ti//Ti-0.077Al-0.07Cr diffusion couple, (b) Ti-0.035Al//Ti-0.035Fe diffusion couple in BCC phase.

*Experiments from:* T. Takahashi, et al., J. Japan Inst. Light Met. 54 (2004) 280. T. Takahashi, et al., J. Jpn. Inst. Met. 60 (2010) 444–450.



## **HCP\_A3** Phase

### Self-diffusivities

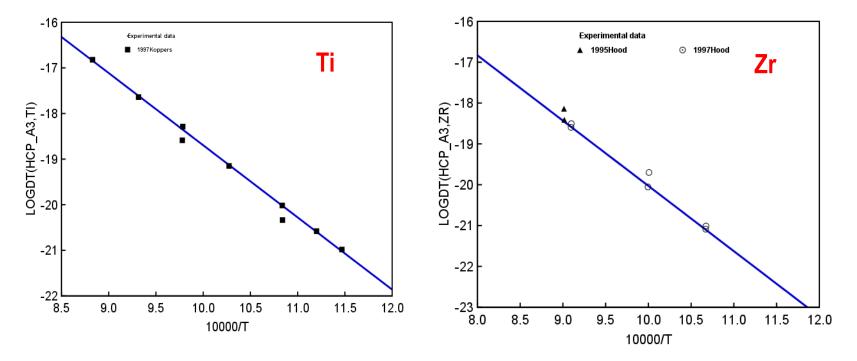
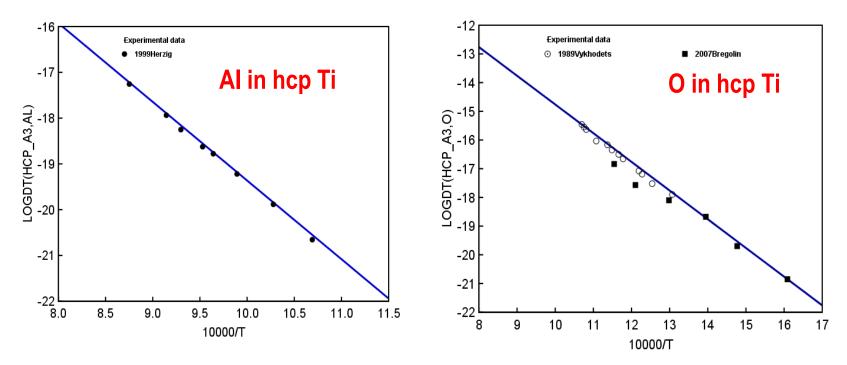



Fig. 9 Calculated self-diffusivities of (a) Ti, (b) Zr in HCP\_A3 phase.

*Experiments from:* M. Koppers, et al., Acta Mater. 45 (1997) 4181.


G.M. Hood, et al., J. Nucl. Mater. 223 (1995) 122.

G.M. Hood, et al., Defect and Diffusion Forum 143–147 (1997) 49.



## **HCP\_A3** Phase

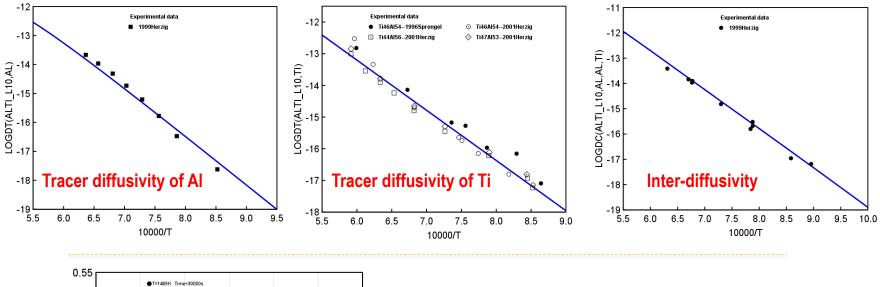
### Impurity diffusivities

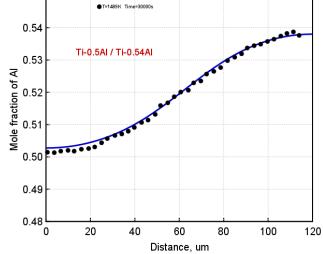


**Fig. 10** Calculated impurity diffusivities of **(a)** Al, **(b)** O in HCP Ti phase, compared with experimental data.

 Experiments from:
 M. Koppers, et al., Acta Mater. 45 (1997) 4181.

 V. B. Vykhodets, et al., Phys. Met. Metallogr. 68, (1989) 94.


 F. L. Bregolin, et al., Appl. Phys. A 86 (2007) 481.


33/34



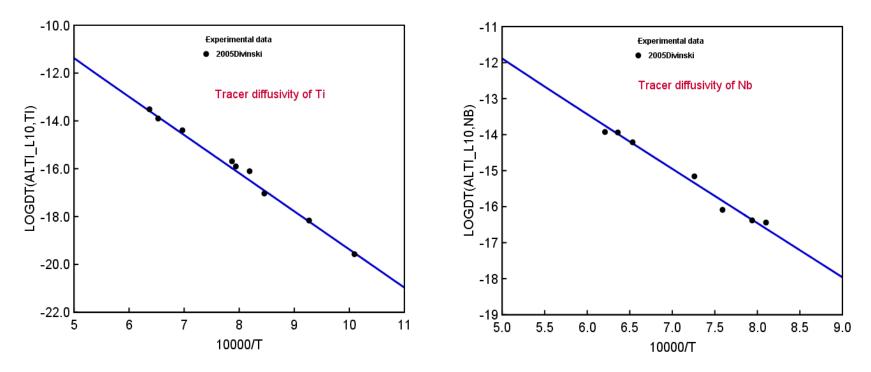
### **ALTI\_L10** Phase

### Ti-Al binary system





**Fig. 11** Simulated concentration profile Ti-0.5Al//Ti-0.54Al diffusion couple in AlTi\_L10 phase.


#### **Experiments from :**

C. Herzig, et al. Intermetallics, 7(1998) 389.
W. Sprengel, et al., Intermetdlics 4 (1996) 185-189.
C. Herziga, et al., Intermetallics 9 (2001) 461-472.



### **ALTI\_L10** Phase

### Ti-Al-Nb ternary system



**Fig. 12** Calculated tracer diffusivities of **(a)** Ti, **(b)** Nb in Ti-0.54Al-0.1Nb ternary alloy (ALTI\_L10 phase)

*Experiments from:* S. Divinski, C. Klinkenberg, C. Herzig, JPEDAV 26(2005) 452-457.

### **Summary**



- The first database for both Ti alloys & TiAl materials
  - o 23 elements, 236 binaries, 70 ternaries in TCTI1
  - Compatible mobility parameters in MOBTI2
- Descriptions of both stable and metastable phases, such as ω
- High throughput DFT calculations in assessing thermodynamic model parameters related to metastable regions and metastable phases
- Capable to predict both equilibrium and non-equilibrium phase transformations, e.g. martensite start temperature.