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The unit interval as a fractal
Laplacian, energy and Fourier series on the unit interval

The unit interval as a self-similar set

Let I = [0, 1], and F0(x) = 1
2
x, F1(x) = 1

2
(x− 1) + 1.

F0I = [0, 1/2], and F1I = [1/2, 1]. Thus

I =
1⋃
i=0

FiI.

ω = (ω1, ω2, . . . , ωm), ωi ∈ {0, 1} : |ω| = m.

Fω = FωmFωm−1 . . . Fω1 .

I =
⋃
|ω|=m

FωI =
2m−1⋃
k=0

[ k
2m
, k+1

2m
].
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The unit interval as a fractal
Laplacian, energy and Fourier series on the unit interval

The unit interval as a limit of graphs

I is the limit of graphs Γm with vertices in Vm defined as
follows:

V0 = {0, 1} Vm =
1⋃
i=0

FiVm−1 = {k/2m}2m

k=0

V∗ is dense in I where

V∗ =
⋃
m≥0

Vm = {k/2m : k = 0, 1, . . . , 2m}∞m=0.
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The unit interval as a fractal
Laplacian, energy and Fourier series on the unit interval

An initial energy functional on the unit interval

Let u : Γ0 → R. Energy of u:

E0(u) = (u(1)− u(0))2.

Find an extension ũ : Γ1 → R of u that minimizes the
energy functional E1:

E1(ũ) = (ũ(1)− ũ(1/2))2 + (ũ(1/2)− ũ(0))2

= (u(1)− ũ(1/2))2 + (ũ(1/2)− u(0))2

Solution: ũ(1/2) = u(1)+u(0)
2

=⇒ E1(ũ) = 1
2
E0(u).

More generally, given u : Γm → R the minimum-energy
extension ũ : Γm+1 → R satisfies Em+1(ũ) = 1

2
Em(u).
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The unit interval as a fractal
Laplacian, energy and Fourier series on the unit interval

The renormalized energy functional on the unit

interval

Remark

It follows that u : Γ0 → R can be extended to ũ : V∗ → R:
ũ|Γm has minimum energy. Moreover, Em(ũ) = 1

2m
E0(u).

Thus, given any function u on V∗ the sequence
{2mEm(u)}m≥1 is a non decreasing and thus we have the
following definition

Definition

Given u : V∗ → R, the energy functional on u is defined by

E(u) = lim
m→∞

2mEm(u) ∈ [0,∞]

and
domE = {u : V∗ → R : E(u) <∞}.
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The unit interval as a fractal
Laplacian, energy and Fourier series on the unit interval

A simplification of the (renormalized) energy

functional

Remark

Observe that for u ∈ C1(I), E(u) = limm→∞ 2mEm(u)

E(u) = lim
m→∞

2m−1∑
k=0

1
2m

(
u(k2−m)−u((k+1)2−m)

1
2m

)2

= lim
m→∞

2m−1∑
k=0

1
2m

(u′(ck))
2

=

∫ 1

0

(u′(x))2dx
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The unit interval as a fractal
Laplacian, energy and Fourier series on the unit interval

A weak definition of the Laplacian

Remark

Given u, v ∈ C1(I) with v(0) = v(1) = 0 we have

E(u, v) =

∫ 1

0

u′v′dx = −
∫ 1

0

u′′vdx = −〈∆u, v〉.
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The unit interval as a fractal
Laplacian, energy and Fourier series on the unit interval

The Laplacian as a limit of graph Laplacians

Definition

Graph Laplacian: for x ∈ V∗ \ V0.

∆mu(x) =
∑
y∼mx

u(y)− 2u(x)

= u(x+ 1/2m) + u(x− 1/2m)− 2u(x).

Moreover, For u ∈ C1(I),

∆u(x) = d2

dx2u(x) = lim
m→∞

4m∆mu(x).
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The unit interval as a fractal
Laplacian, energy and Fourier series on the unit interval

Graph spectra and Fourier series

Observation

Recall that the solutions of −∆u = λu, u(0) = u(1) = 0 are

uk(x) = sin kπx with λk = π2k2, k = 1, 2, . . . ,

Given m, k ≥ 1, let u = uk|Γm
, λ = π2k2. It follows that

−∆mu = λmu where λm = 4 sin2(
√
λ

2m+1 ).

Therefore, the restriction of any eigenfunction of −∆ to any
of the graphs Γm is an eigenfunction of ∆m.
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The unit interval as a fractal
Laplacian, energy and Fourier series on the unit interval

Spectra of ∆m−1 and ∆m

Lemma

λm−1 = 4 sin2(
√
λ

2m
) = λm(4− λm).

• u := uk|Γm−1
: ∆m−1u = λm−1u can be extended to ũ:

∆mũ = λmũ.
• Consequently, the spectrum of ∆m is completely determined
by that of ∆m−1. This is called the spectral decimation
method.

Observation

lim
m→∞

4mλm = lim
m→∞

4m+1 sin2(
√
λ

2m+1 ) = λ = π2k2
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The unit interval as a fractal
Laplacian, energy and Fourier series on the unit interval

The spectral decimation method

Lemma (The spectral decimation method: Shima &
Fukushima (90s); Rammal & Toulouse (80s))

Assume that

−∆m−1um−1(x) = λm−1um−1(x) x ∈ Vm−1 \ V0.

Let λm be such that λm−1 = λm(4− λm). Assume that
λm 6= 2 and extend um−1 to um by
um(x) = 1

2−λm−1
(u(y) + u(z)) where y, z are the two

neighbors of x in the graph Γm. Then

−∆mum(x) = λmum(x) x ∈ Vm \ V0.
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The unit interval as a fractal
Laplacian, energy and Fourier series on the unit interval

Recap

1 The unit interval is a limit of graphs.

2 ∆ = d2

dx2 is a limit of weighted graph Laplacians ∆m.

3 The spectrum of −∆ is completely determined by the
spectra of the graph Laplacians −∆m.

4 The theory of Fourier series can be completely built from
the spectral analysis of the graph Laplacians −∆m

Question

Can this theory be extended to a non trivial setting, i.e., for a
set other than the unit interval I?
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Definition and example
The Laplacian and the energy functional on SG

Definition

What’s a fractal?

I know one when I see one!

Here we consider self-similar fractals that are “barely”
connected. These are known as post critically finite
(PCF) fractals, a typical example of which is the
Sierpinski gasket.

Definition

The fractal we consider below will be the unique non empty
compact set K such that K = ∪Ni=1Fi(K) where {Fi}Ni=1 are
contraction maps. In addition #(Fi(K) ∩ Fj(K)) <∞.
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Definition and example
The Laplacian and the energy functional on SG

The Sierpinski Gasket (SG)
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Definition and example
The Laplacian and the energy functional on SG

Construction of SG

Definition

Let q1 = (0, 0), q0 = (1/2,
√

3/2), and q2 = (1, 0). Define
Fi : R2 → R2 by Fi(x) = 1

2
(x− qi) + qi, i = 0, 1, 2.

The Sierpinski gasket is the unique nonempty compact subset
SG of R2 such that

SG = ∪2
i=0Fi(SG).

More generally, given m ≥ 1,

SG = ∪|ω|=mFω(SG).
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Definition and example
The Laplacian and the energy functional on SG

SG as a limit of graphs

Observation

SG is the limit of graphs Γm with vertices in Vm where

V0 = {qi}2
i=0, Vm =

2⋃
i=0

FiVm−1.

V ∗ is dense in SG where

V∗ =
⋃
m≥0

Vm
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Definition and example
The Laplacian and the energy functional on SG

An initial energy functional on SG

  q
1

q
0

q
2
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Definition and example
The Laplacian and the energy functional on SG

An initial energy functional on SG

Let u : Γ0 → R. The energy of u is given by

E0(u) =
2∑

k=0

(u(qk+1)− u(qk))
2.

The extension ũ : Γ1 → R of u that minimizes E1:

E1(ũ) =
2∑

k,`=0

(ũ(Fk(q`+1))− ũ(Fk(q`)))
2

is a harmonic function and

E1(ũ) = 3
5
E0(u).

More generally, given u : Γm → R the minimum-energy
extension ũ : Γm+1 → R satisfies Em+1(ũ) = 3

5
Em(u).
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Definition and example
The Laplacian and the energy functional on SG

The renormalized energy functional on SG

Definition

Given u : V∗ → R, the energy functional on u is defined by

E(u) = lim
m→∞

5m

3m
Em(u) ∈ [0,∞]

and
domE = {u : V∗ → R : E(u) <∞}.

Remark

The Laplacian on SG can now be defined in a weak sense: Let
u ∈ domE and f be a continuous function on SG. Then
u ∈ dom∆ with ∆u = f if E(u, v) = −

∫
SG
fvdµ for all

v ∈ domE with v|V0
= 0.
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Definition and example
The Laplacian and the energy functional on SG

Pointwise definition of the Laplacian on SG

Definition

The graph Laplacian on Γm is defined by:

∆mu(x) =
∑
y∼mx

u(y)− 4u(x) x ∈ Vm \ V0.

Moreover, the Laplacian on SG is the operator defined by

∆u(x) = 3
2

lim
m→∞

5m∆mu(x).
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Definition and example
The Laplacian and the energy functional on SG

The spectral decimation method on SG

Lemma (The spectral decimation method: Shima &
Fukushima; Rammal & Toulouse)

Assume that
−∆m−1um−1(x) = λm−1um−1(x) x ∈ Vm−1 \ V0.
Let λm : λm−1 = λm(5− λm). Assume that λm 6= 2, 5, 6 then
um−1 can be extended to a function um on Vm such that

−∆mum(x) = λmum(x) x ∈ Vm \ V0.

Conversely, if um is an eigenfunction of −∆m with eigenvalue
λm, then um|Vm−1

is an eigenfunction of −∆m−1 corresponding

to the eigenvalue λm−1 where λm−1 = λm(5− λm).
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Definition and example
The Laplacian and the energy functional on SG

Some properties of the spectrum of −∆ on SG

Observation

The solution of −∆u = λu on SG \ V0 under Dirichlet or
Neumann boundary conditions come from three families
{λ(2)

k , λ
(5)
k , λ

(6)
k }k≥1 of eigenvalues of the graph Laplacian

corresponding to the graph eigenvalues 2, 5, 6.
λ

(2)
k have all multiplicity 1, most of the λ

(5)
k , and λ

(6)
k have

very high multiplicities. Moreover, there exist localized
eigenfunctions, i.e., eigenfunctions supported on very small
subsets of SG, corresponding to the 5, and 6 series
eigenvalues.
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Definition and example
The Laplacian and the energy functional on SG

Fourier series on SG

Theorem

Let µ be the probability measure on SG that assigns the
weight 3−m to each set Fω(SG) where |ω| = m. Then there
exists an orthonormal basis of eigenfunctions {uk}∞k=1 of −∆
on SG corresponding to eigenvalues {λk}∞k=1. Consequently,
and u ∈ L2(SG) has the following L2 expansion

u =
∞∑
k=1

〈u, uk〉uk.
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Definition and example
The Laplacian and the energy functional on SG

Some consequences of the existence of localized

eigenfunctions

The existence of localized eigenfunctions of −∆ on SG has
many consequences. In particular, using this

1 Heisenberg uncertainty principle type inequalities can be
established on SG and other related fractals.

2 Spectra of Schrödinger type operators H = −∆ + V on
SG.

3 Szegö-type limit theorems have been established on SG.

4 Convergence of Fourier series on SG.
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Orthogonal polynomials on SG
Some consequences of the existence of localized eigenfunctions on SG

Definition

Definition

For j ≥ 0 a polynomial of degree less than or equal to j is any
solution of

∆j+1u = 0.

The set of all polynomials of degree less than or equal to j is
denoted Hj and is a linear space of dimension 3(j+ 1). A basis
for this space consists of {fki : 0 ≤ k ≤ j, i = 0, 1, 2} where

∆`fki(qi′) = δ`,kδi,i′ ,

where 0 ≤ ` ≤ j, i′ = 0, 1, 2.
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Orthogonal polynomials on SG
Some consequences of the existence of localized eigenfunctions on SG

Another basis of monomials for Hj

Remark

Recall that on I = [0, 1], and for j ≥ 0, the monomial

fj(x) = xj

j!
satisfies

dkfj
dxk

(0) = 0 if 0 ≤ k < j and
djfj
dxj

(0) = 1.
On SG there are analogs of these monomials and they for a
basis for Hj consisting of monomials {Pj,i : i = 1, 2, 3; j ≥ 0}.
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Orthogonal polynomials on SG
Some consequences of the existence of localized eigenfunctions on SG

A family of antisymmetric OP on SG

Definition

Fix i = 1, 2, or 3 and let {Qj}∞j=0 be the orthonormal system
obtained by applying the Gram-Schmidt process to {Pj,i}j≥0.
Then {Qj}∞j=0 is a family of OP on SG, i.e.,

〈Qk, Q`〉 =

∫
SG

Qk(x)Q`(x)dµ(x) = δk,`.

Remark

Bases of polynomials on SG were used to solve numerically
some differential equations (heat, wave, Schrödinger
equations) on SG using finite element methods, K. Dalrymple,
R. Strichartz and J. Vinson (1999).
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Orthogonal polynomials on SG
Some consequences of the existence of localized eigenfunctions on SG

A family of antisymmetric OP on SG

Theorem (R. S. Strichartz, E. K. Tuley, and K. A. O. (2013))

The OP polynomials {Qk}k≥0 defined above satisfies the
following three-term recursion formula:

√
ck+1Qk+1(x) = fk+1(x)− bkQk(x)−

√
ckQk−1(x)

for some coefficients ck, bk and an auxilary polynomial
fk+1 ∈ Hk+1.
Q−1(x) = 0, Q0(x) = d0P0,3.

Remark

Analogues of Christoffel-Darboux formulas, Jacobi matrices
associated to {Qj}j≥0
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Orthogonal polynomials on SG
Some consequences of the existence of localized eigenfunctions on SG

Examples of antisymmetric OP on SG
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Orthogonal polynomials on SG
Some consequences of the existence of localized eigenfunctions on SG

More examples
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Orthogonal polynomials on SG
Some consequences of the existence of localized eigenfunctions on SG

Restriction of the antisymmetric OP on the x axis
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Orthogonal polynomials on SG
Some consequences of the existence of localized eigenfunctions on SG

Restriction of the antisymmetric OP on the x axis

−4

−2

0

2

4

bottom edge

Q2

−4

−2

0

2

4

bottom edge

Q3

K. Okoudjou Analysis on fractals: An introduction



Motivations: Fourier series revisited
PCF fractals

A taste of analysis on SG
References

Orthogonal polynomials on SG
Some consequences of the existence of localized eigenfunctions on SG

Heisenberg UP (Heisenberg-Weyl-Pauli, 1920’s)

Let ‖f‖2 = ‖f̂‖2 = 1.

Heisenberg Uncertainty Principle: [HUP]∫
|x− µf |2 |f(x)|2 dx

∫
|ω − µf̂ |

2 |f̂(ω)|2 dω ≥ 1
16π2 .

A signal cannot be localized in position and momentum,
or

If you know where you are, you don’t know where you are
going; and if you know where you are going, you don’t
know where you are.
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Orthogonal polynomials on SG
Some consequences of the existence of localized eigenfunctions on SG

Heisenberg UP: Equivalent formulation

Note that∫
|ω|2 |f̂(ω)|2 dω = 1

4π2

∫
|f ′(x)|2 dx := 1

4π2E(f, f)

∫
|x|2|f(x)|2dx = 1

2

∫∫
|x−y|2|f(x)|2|f(y)|2dxdy := 1

2
V ard(|f |2)

HUP can be written as∫∫
|x− y|2|f(x)|2 |f(y)|2 dx dy

∫
|f ′(x)|2 dx ≥ 1

2

equivalently,
V ard(|f |2)E(f, f) ≥ 1

2
.
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Orthogonal polynomials on SG
Some consequences of the existence of localized eigenfunctions on SG

Weak Uncertainty Principles

Theorem (K. A. Okoudjou, R. Strichartz, 2005)

There exists C > 0 such that ∀u : ‖u‖2 = 1, EK(u, u) <∞
and V ard(|u|2) ≤ 1/2, then

EK(u, u)V ard(|u|2) ≥ C.

EK(u, u) was defined earlier and

V ard(|u|2) =

∫∫
SG×SG

d(x, y)γ|f(x)|2 |f(y)|2 dµ(x) dµ(y),

where d is a metric on SG given by

d(x, y) = sup{ 1
E(u,u)

: u ∈ C(SG,R)u(x) = 0, u(y) = 1}.
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Orthogonal polynomials on SG
Some consequences of the existence of localized eigenfunctions on SG

Weak UP on (K, d, µ)

Theorem (K. O/Saloff-Coste/Teplyaev, 2006)

Let (K, d, µ) be a metric measure space such that d is the
effective resistance metric associated to the Dirichlet form EK .
Under suitable conditions on µ and d, we prove that there
exists C > 0 such that for all u ∈ domE , ‖u‖2 = 1,

V ard(|u|2) EK(u, u) ≥ C.
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Orthogonal polynomials on SG
Some consequences of the existence of localized eigenfunctions on SG

Remarks

If K = R we recover the HUP with a different proof.

K is unbounded, and is not a graph.

Similar results for bounded fractals, unbounded graphs.
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Orthogonal polynomials on SG
Some consequences of the existence of localized eigenfunctions on SG

Schrödinger operators on SG

Schrödinger operators: H = −∆ + χ, where χ is a
real-valued continuous function on SG.

What is the asymptotics behavior of the spectrum of H?

The potential χ ”forces” high multiplicity eigenvalues of
−∆ to split in cluster.

The characteristic measure of this cluster converges to a
measure.
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Orthogonal polynomials on SG
Some consequences of the existence of localized eigenfunctions on SG

Motivation: Schrödinger operators on the unit

sphere

Weinstein (1977): Consider H = −∆ + χ, ∆ on a
compact riemannian manifold, and χ is a smooth
potential.

Eigenvalues of H break into clusters.

Example: on the unit n-sphere Sn, eigenvalues of −∆ are
λk = k(k + n− 1), k = 0, 1, 2, . . .. Each eigenvalue has
multiplicity growing as a kn−1.

Guillemin (1978) has related results.
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Orthogonal polynomials on SG
Some consequences of the existence of localized eigenfunctions on SG

Spectra of Schrödinger operators on SG

Theorem (K. A. Okoudjou and R. S. Strichartz, 2007)

Let H = −∆ + χ with χ continuous on SG, then the
spectrum of H breaks into clusters which converges to a Borel
measure.
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Orthogonal polynomials on SG
Some consequences of the existence of localized eigenfunctions on SG

The strong Szegö limit theorem on [0, 2π)

Let

Pn : L2([0, 2π))→ span{eimθ : 0 ≤ m ≤ n; 0 ≤ θ < 2π}.

If f is a function on [0, 2π), [f ] denotes the multiplication
operator by f :

[f ]g = fg.

Pn[f ]Pn is a Toeplitz matrix whose (k, l) entry is f̂k−l,
the (k − l)th Fourier coefficient of f .
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The strong Szegö limit theorem on [0, 2π)

Theorem (G. Szegö, (1952))

If f > 0 and f ∈ C1+α where α > 0, then the following holds:

lim
n→∞

1
n+1

log detPn[f ]Pn = 1
2π

∫ 2π

0

log f(θ) dθ.

Equivalently,

lim
n→∞

1
n+1

Trace logPn[f ]Pn = 1
2π

∫ 2π

0

log f(θ) dθ.
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Szegö theorem on SG

Theorem (Strichartz, Rogers, K.O (2010); Ionescu, Rogers,
K.O (2017))

The strong Szegö limit theorem holds on SG, and can be
extended to pseudodifferential operators.
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Thank You!
http://www2.math.umd.edu/ okoudjou/
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