Views on the Framework for Improving Critical Infrastructure Cybersecurity
CISQ Response to NIST Cybersecurity Framework RFI

Objectives

1. To update the NIST Cybersecurity Framework to enhance the role of structural analysis
of source code at both the architectural and modular level as a critical recommended
practice.

2. To update the NIST Cybersecurity Framework by referencing two new standards
approved by the Object Management Group, the Automated Source Code Security
Measure and the Automated Source Code Reliability Measure (hereafter referred to as
the CISQ measures).

Overview

This response is submitted on behalf of the Consortium for IT Software Quality (CISQ) to the
Request For Information on the NIST Cybersecurity Framework. CISQ is a Special Interest Group
of the Object Management Group (OMG) chartered to develop standards for automating the
measurement of source code in software-intensive systems. CISQ was jointly formed by OMG
and the Software Engineering Institute (SEI) at Carnegie Mellon University.

CISQ is submitting this recommendation for updating the NIST Cybersecurity Framework to
strengthen its focus on structural weaknesses in the software of critical infrastructure systems
that create the greatest risk to secure and dependable operations. Critical infrastructure
systems are vulnerable to unauthorized penetration and undependable operation as long as
severe weaknesses exist in the source code. Thus, analysis and measurement of structural
weaknesses should be a standard element of any development, maintenance, acquisition, or
related process to ensure that critical infrastructure systems operate on secure and dependable
software.

CISQ Automated Source Code Measurement Standards

During 2015 four Automated Source Code measures (Reliability, Security, Performance
Efficiency, and Maintainability) developed by CISQ were approved as OMG standards. They are
the only international standards that measure the structural quality of software-intensive
systems based on quantifying specific, named weaknesses in the source code. These measures
were constructed using definitions in ISO/IEC 25010, the standard that defines eight software
guality characteristics and elaborates them into sub-characteristics. The CISQ measures
supplement ISO/IEC 25023, the standard that enumerates measures of the various sub-
characteristics. However, ISO/IEC 25023 provides measures primarily at the behavioral level
and does not enumerate or measure specific weaknesses in the source code that cause
undesirable behaviors. The CISQ measures were designed to be quantified from automated



analysis of architectural and coding weaknesses in source code, since manual review is
infeasible for large multi-layer, multi-language, multi-platform systems.

The CISQ measures were developed by the 24 companies that initially joined CISQ, with
involvement of experts from the Software Engineering Institute and MITRE Corporation. The
CISQ measures were developed as counts of critical weaknesses—weaknesses that the majority
of members believed must be fixed. The CISQ measures are currently defined using
weaknesses found in IT systems. They will be supplemented in upcoming work with versions
focused on specific weaknesses in embedded systems. However, the vast majority of
weaknesses enumerated in the CISQ measures are common to both IT and embedded systems.
The measures are agnostic to programming language, although the structure of some languages
avoid certain weaknesses.

Two of the CISQ measures approved as OMG standards are directly relevant to the NIST
Cybersecurity Framework—the Automated Source Code Security Measure®! and the Automated
Source Code Reliability Measure?. The Reliability measure was constructed from weaknesses
that have been shown to cause outages, data corruption, and excessive recovery time.

The CISQ Security measure was drawn from the Top 25 Common Weaknesses contained in the
Common Weakness Enumeration managed by MITRE Corporation on behalf of the
cybersecurity community with funding from the Department of Homeland Security. These
weaknesses are also known as the ‘CWE/SANS Top 25 Most Dangerous Software Errors’. Of
these 25 weaknesses, 22 can be detected through static analysis of the source code. These
weaknesses include such flaws as SQL injection, cross-site scripting, and buffer overflows.
Counting their occurrences in a software-intensive system constitutes the CISQ Security
measure. This measure can be normalized by a size measure to provide a density measure
useful for benchmarking. Vendors of static analysis tools detect most, but not necessarily all of
these weaknesses, and their coverage is increasing yearly.

Using the CISQ Measures

Cybersecurity Objectives. The CISQ measures provide critical assistance to organizations in
achieving the primary objectives of the NIST Cybersecurity Framework in the following ways.

1) Describe the current cybersecurity posture—a critical aspect of the current cybersecurity
posture is identification of the specific risks posed by exploitable weaknesses in the
source code of critical systems. The CISQ measures provide a more factual assessment
of the current cybersecurity of the software component based on standardized
measures of weaknesses in the architecture and code.

2) Describe their target state for cybersecurity—a critical aspect of the target state for
cybersecurity is specifying the level of risk that can be tolerated and the source code
weaknesses that would have to be eliminated as part of achieving and sustaining the
target risk profile. The CISQ measures provide a fact-based foundation for expressing



3)

4)

5)

the target cybersecurity a software component based on standardized measures that
can identify weaknesses to be eliminated.

Identify and prioritize opportunities for improvement within the context of a continuous
and repeatable process—since traditional testing and penetration analysis, although
important, do not detect all the structural weaknesses in a system, CISQ believes it is
critical to supplement these traditional techniques with system-level static analysis to
identify exploitable weaknesses in the architecture and code that are difficult to detect
through other assurance methods.

Assess progress toward the target state—the presence of cybersecurity weaknesses in
the source code of critical infrastructure systems must be analyzed, measured, and
regularly tracked as part of accurately assessing progress toward the target state.
Communicate among internal and external stakeholders about cybersecurity risk—the
most effective communication conveys cybersecurity risk through evidence-based
measures on the elements creating risk, including valid measures of cybersecurity
weaknesses in the source code as enumerated in the CISQ measures.

Cybersecurity Practices. CISQ recommends the following actions be incorporated into
development and release practices for critical infrastructure systems.

1)
2)

3)

4)

All software critical infrastructure systems must be analyzed at each release for critical
security or reliability weaknesses enumerated in the CISQ measures.

Security or reliability weaknesses detected in the system by analyzing the CISQ
measures should be prioritized and incorporated into a backlog of must-fix weaknesses.
Measures of the security and reliability of source code should be incorporated as
primary contributors to the assessment and measurement of risk in critical
infrastructure systems.

Executive management should periodically review the state of their critical
infrastructure systems with particular attention to progress on eliminating security and
reliability weaknesses.

Fitting Structural Analysis and the CISQ Measures into the Framework

Implementation Tiers. Structural analysis of source code weaknesses in critical infrastructure
systems contributes at all tiers of the Cybersecurity Implementation Framework as a risk
management process. However, the use of structural analysis as a cybersecurity risk
management practice will differ at each tier of the implementation framework as suggested in
the following bullets.

Tier 1— some but not necessarily all critical systems will be analyzed for cybersecurity
weaknesses in the source code. Implementations of structural analysis will not be
consistent across systems and may not be consistently used where implemented. The
results of the analysis may or may not be acted upon. For instance, identified
weaknesses may not be prioritized for remediation, or measures derived from the



identified weaknesses may not be tracked or incorporated into cybersecurity risk
analyses.

Tier 2— management expects structural analysis to be performed on each critical
system but has not established a consistent policy requiring it. The organization has not
defined a standard practice for conducting structural analysis. Information and
measures resulting from structural analyses are not used in consistent ways across
systems. As a result of these inconsistencies it is difficult to compare the cybersecurity
state of systems internally or against external benchmarks.

Tier 3 — structural analysis is required by policy on all critical infrastructure systems
and a process for incorporating structural analysis into the standard system
development and maintenance process has been defined. Tailoring guidelines have
been developed for adjusting practices to the characteristics of each system and its
cybersecurity environment. Standardized metrics such as the CISQ measures have been
adopted for analysis and reporting. Practices for translating results into prioritized
remedial actions and tracking progress toward cybersecurity targets are integrated into
recurring release processes. Data emerging from structural analyses are consistent
across systems and can be incorporated into a repository for measuring and managing
cybersecurity risk at the organizational level.

Tier 4 — structural analysis results and measures are periodically analyzed to identify
improvements that can be made to structural analysis processes, as well as the
interpretation and use of the measures. Structural quality measures are also analyzed
to identify improvements in system development and maintenance practices that
reduce or eliminate the creation or injection of cybersecurity weaknesses into the
source code. Progress and benefits of improvements are tracked using structural
analysis measures.

Organizational Tiers. Information resulting from structural analysis of the source code of
critical infrastructure systems can be used at different tiers of the organization as suggested in
the following bullets.

Executive Level — executives establish organizational cybersecurity risk tolerance
objectives that can include specific objectives measured against source code
weaknesses in each critical infrastructure system. They monitor progress toward these
objectives with risk data provided by the business/process level, and may track
remediation progress and remaining risk on particularly sensitive or troubled systems.
Business/Process Level — the business/process level translates executive decisions
regarding risk tolerance into cybersecurity risk profiles for each critical infrastructure
system. These profiles include measurable objectives for eliminating cybersecurity
weaknesses in the system. Progress toward these objectives is tracked with structural
analysis measures received from implementation level managers. These results can be
used to allocate resources to systems exhibiting the highest cybersecurity risk.
Structural analysis measures are also aggregated with other risk information into the
organizational system risk profile that is communicated to executives.



Implementation/Operations Level — structural analysis results are used by the those
managing each critical infrastructure system to identify cybersecurity weaknesses within
the system, assess its current level of risk and the distance from a target objective,
prioritize remediation actions, track progress toward the target objective, and
communicate risk information to stakeholders, especially those at the business/process
level. Developers use the results to locate prioritized weaknesses in the system and
eliminate them. Developers can also use the results to learn from mistakes, improve
secure architectural and coding practices, and launch iterations with information about
frequent weaknesses to avoid. Operations staff can use the information for
understanding which attack patterns may be able to exploit identified weaknesses in the
system that have yet to be eliminated.

Cybersecurity Implementation Processes. Structural analysis information fits within several
steps for establishing or improving a cybersecurity program.

Step 3: Create a Current Profile — a critical component of a current risk profile will be
whether the existing system development and maintenance processes include practices
for analyzing, measuring, prioritizing, and eliminating structural cybersecurity
weaknesses in the source code.

Step 4: Conduct a Risk Assessment — a cybersecurity risk assessment should include
analysis and measurement of the structural weaknesses in the source code of critical
infrastructure systems that can be exploited during an attack or result in undependable
operation. Since these weaknesses are a primary source of risk, their detection and
measurement should be a primary component of the risk profile emerging from the
assessment. The software risk indicators incorporated into the risk profile should be
backed by a measured assessment against relevant standards such as the CISQ
measures.

Step 5: Create a Target Profile — a detailed target profile should include descriptions
of the type, number, density, location, or other characteristics of cybersecurity
weaknesses that can be tolerated within the acceptable risk profile of a system, and the
length of time allowed for removal for those weaknesses that must be eliminated to
achieve the target profile. These target profiles will be specific to each critical
infrastructure system and should include one or more source code-based measures for
evaluating progress.

Step 6: Determine, Analyze, and Prioritize Gaps — structural analysis will provide
measures and input for determining the gap between the current and target profiles for
the cybersecurity of a critical infrastructure system’s source code. These measures and
inputs enable prioritization of the various source code remediation actions that must be
taken to achieve the overall risk profile for a critical infrastructure system.

Step 7: Implement the Action Plan — structural analysis and measurement of
cybersecurity weaknesses provide detailed input for developing action plans that
include eliminating cybersecurity weaknesses to achieve the target profile. The plan
should include specific actions to eliminate the types of weaknesses incorporated into



the CISQ measures. Progress toward achieving the target profile for the cybersecurity of
the source code can then be measured and tracked at each milestone of the plan.

The CISQ measures provide source code-based information and measures that can be used to
communicate the technical risk in critical systems and how that risk is being reduced by
progress on the cybersecurity action plan. Since this risk information is grounded in measured
fact rather than judgment, it will provide greater credibility to the communication. Information
based on cybersecurity weaknesses does not have privacy implications, although organizations
will typically treat the data as proprietary to their internal risk management activities.

Referencing CISQ Measures in the Framework Core

The CISQ measures provide relevant standards to be referenced for incorporating the analysis
and measurement of cybersecurity weaknesses in source code into the following subcategories
of the NIST Cybersecurity Framework.

e ID.GV-1: Organizational information security policy is established — the policy should
include a statement about eliminating cybersecurity weaknesses in the source code of
critical systems since this is a primary source of exploitation and unreliable operation, as
well as providing fact-based measures for assessing risk.

e ID.RA-1: Asset vulnerabilities are identified and documented — the CISQ Security
measure provides explicit guidance for the vulnerabilities in the source code that should
be identified based on the SANS/CWE Top 25 Most Dangerous Software Errors, a list
drawn from industry experience. The CISQ Reliability measure provides additional
guidance on vulnerabilities that can result in outages, data corruption, unpredictable
behavior, and other operational maladies.

e ID.RA-5: Threats, vulnerabilities, likelihoods, and impacts are used to determine risk —
the CISQ measures provide objective quantification of source code weaknesses that can
be used in expressing the software risk in critical infrastructure systems.

e ID.RA-6: Risk responses are identified and prioritized — analyzing source code against
the CISQ measures yields a list of explicit weaknesses that can be prioritized for
elimination during current or future releases. Organizations can refer to the Common
Weakness Enumeration Repository for detailed information about each weakness type
and potential methods for elimination.

e ID.RM-2: Organizational risk tolerance is determined and clearly expressed — the CISQ
measures provide fact-based results whose scores can be represented as absolute
counts, density measures, sigma levels, or other quantifications that can be used for
expressing a level of risk tolerance for cybersecurity weaknesses in the source code.

e PR.AT-6: Information systems personnel understand specific cybersecurity weaknesses in
source code — consider adding a PR.AT-6 where system developers are trained in
cybersecurity weaknesses they should avoid, detect, and eliminate. The CISQ measures
provide a list of weaknesses that should be incorporated into training. This subcategory
could be expanded and made more generic to cover other technical personnel with



standards enumerating weaknesses in their domain such as hardware, networking, or
communications.

e PR.DS-1: Data-at-rest is protected — the CISQ measures include weaknesses that can
expose data to unauthorized access or corruption.

e PR.DS-6: Integrity checking mechanisms are used to verify software, firmware, and
information integrity — structural analysis at both the architectural and modular level
should be included as mechanisms for verifying software integrity. The CISQ measures
enumerate weaknesses whose absence should be verified.

e PR.IP-2: A System Development Life Cycle to manage systems is implemented — the
system development life cycle should include static and dynamic analysis of structural
cybersecurity integrity as well as explicit measures of results.

e PR.IP-12: A vulnerability management plan is developed and implemented — a
vulnerability management plan should include remediation actions for explicit
cybersecurity weaknesses enumerated in the CISQ measures that exceed the target
profile for risk tolerance.

e DE.CM-8: Vulnerability scans are performed — Source code of critical systems should be
scanned periodically to determine the type, number, location, density, and other
characteristics of the cybersecurity weaknesses contained in the CISQ measures.

References

(1) Object Management Group (2015). Automated Source Code Security Measure.
http://www.omg.org/spec/ASCSM/1.0/PDF

(2) Object Management Group (2015). Automated Source Code Reliability Measure.
http://www.omg.org/spec/ASCRM/1.0/PDF

Submitter on behalf of CISQ

Dr. Bill Curtis
Executive Director, CISQ
director@it-cisq.org


mailto:director@it-cisq.org
http://www.omg.org/spec/ASCRM/1.0/PDF
http://www.omg.org/spec/ASCSM/1.0/PDF



