# **Chip-Scale Atomic Devices**



# John Kitching Time and Frequency Division National Institute of Standards and Technology USA



# Atomic Devices and Instrumentation Group

- Formed in 2009 based on success of chip-scale atomic clock program
  - CSACs largely unique when program began at NIST
  - Now many groups doing similar things (Switzerland, France, UK, China, Japan)
- Applied research into practical devices
  - Spectroscopy + MEMS + diode lasers
- Current activities
  - Chip-scale atomic magnetometry (Svenja Knappe)
  - Compact cold atom systems (Liz Donley)
  - NIST on a Chip (me)
- Outcomes
  - Regular scientific publications and talks
  - Six patents
  - Many collaborations with industry (Honeywell, Texas Instruments, Geometrics, Quspin, ColdQuanta, Symmetricom, Tristan, HRL, Analog Devices, Vixar, Princeton Optronics...)





# Chip-Scale Atomic Clocks

- DARPA-funded program ran 2002 2009 + 3 years ManTech
  - Early development pioneered at NIST
  - Commercial product as of January, 2011



DARPA CSAC goals/achieved

- 1 cm<sup>3</sup> / 10 cm<sup>3</sup>
- 30 mW / 120 mW
- $\Delta f/f = 10^{-11} @ 1 hour$

Army ManTech goals

- \$100 / unit
- 20,000 units/year



### Alkali Vapor Cell Fabrication using MEMS

### **Conventional Cells**



- Large; long relaxation times
- Buffer gases or wall coatings
- Good optical access for perpendicular pump/probe



(19) United States (12) Patent Application Publication (10) Pub. No.: US 2013/0176703 A1 Hopper et al. (43) Pub. Date: Jul. 11, 2013 TΙ

#### **Microfabricated Cells**



- Small, scalable, easy to integrated
- Enables low-power instruments (chip-scale atomic clock)
- Parallel fabrication for low-cost mass-production

# **Technology Evolution**



### **Chip-scale Atomic Magnetometers**



## Magnetometer applications

### **Biomagnetics**



 Heart and brain signals: low frequencies (0.1 -100 Hz), very weak (1 pT – 100 pT)





10<sup>-22</sup> T<sup>2</sup>

### Low and zero-field NMR

With A. Pines, D. Budker, UC Berkeley











With L. Trahms, T. Sander, PTB



40 60 t/ms

80

100

0 20

## Miniaturized Laser Cooled Systems

- Laser cooling allows microkelvin temperatures, slower atom velocities and better performance
- Current generation of primary frequency standards at NIST (NIST-F1, NIST-F2) are based on laser cooled atoms
- Our group: liter-size physics packages with 10<sup>-12</sup> frequency stability
- Accuracy of 10<sup>-13</sup> possible



Liz Donley









## NIST on a Chip

• Measurement standards in chip format



- Goals: SI-traceable, manufacturable, low-cost
- Get rid of the middle-man (NIST!)

# NIST on a Chip with Alkali Vapor Cells



4+1 of 7 base SI units could be realized at chip-scale with microfabricated alkali vapor cells

## Summary

- Clocks, magnetometers, gyros, accelerometers, etc.
  - All based on cutting edge science of ~ 30 years ago
  - Reinvented with MEMS and lasers
- Focus on applied science, innovative instrumentation and technology transfer
  - We are trying earnestly and directly to improve US technology and manufacturing by developing new instruments and technology that can be used in the real world
  - We have reinvented ourselves several times over: clocks -> magnetometers -> gyros -> brain imaging -> photonics
- Much still to be done

