Interdiffusion and Phase Growth Kinetics in the Magnesium-Aluminum Binary System

Kaustubh N. Kulkarni General Motors Global R&D, Bangalore, India (Currently Indian Institute of Technology, Kanpur, India)

Alan A. Luo

General Motors Global R&D, Warren, MI, USA

Kaustubh N. Kulkarni and Alan A. Luo; J. Phase Equilib. Diff.; 34; 2013; p. 104

Outline

- □ Use of CALPHAD in Mg alloy development
- □ Why interdiffusion data needed in Mg-Al alloys
- Experimental methodology
- □ Analysis of interdiffusion coefficients as functions of composition
- □ Analysis of impurity diffusion coefficients
- \Box Growth kinetics of Mg₁₇Al₁₂ (γ) and Al₃Mg₂ (β) phases
- Conclusions

Mg-Al Binary System

 \Box Mg₁₇Al₁₂ (γ phase) - low eutectic temperature 436°C

Limited strengthening - no metastable phases and large precipitates

Mg-AI-Ca System: Creep-Resistant Alloys

A.A. Luo, B.R. Powell, A.K. Sachdev, Intermetallics, 2012, 24, 22-29

Solidification Microstructure:

Scheil Simulation vs. Experimental Results

Gap: back diffusion of alloying elements is related to solidification rates

Alloy	Scheil Simulation, vol.%				Measurement, vol.%
	(Mg,Al) ₂ Ca	Mg ₂ Ca	$Mg_{17}AI_{12}$	Total Fraction	Total Fraction
AM50	-	-	4.3	4.3	4.8
AX51	2.0	0	2.7	4.7	5.5
AX52	4.1	0	0.9	5.0	5.8
AX53	5.8	0.1	0	5.9	6.2

A.A. Luo, B.R. Powell, A.K. Sachdev, Intermetallics, 2012, 24, 22-29

X. Zheng, A.A. Luo, C. Zhang, J. Dong, R.A. Waldo, Metallurgical and Materials Transactions A, 2012, 43A, 3239-3248.

Mg-AI-Sn System: Precipitation Hardening

A.A. Luo, P. Fu, X. Zeng, L. Peng, B. Hu, A.K. Sachdev, in Magnesium Technology 2013, TMS, 341-345.

- Precipitation kinetics depends strongly on the diffusivities of alloying elements in the matrix
- Lack of experimental data on diffusivities as functions of compositions in Al and Mg alloys

Ref: J. D. Robson, "Modeling the evolution of particle size distribution during nucleation, growth and coarsening"; Materials Science and Technology; Vo. 20; pp 441-448

Interdiffusion in Multicomponent Systems

Interdiffusion
flux of
component i
$$\longrightarrow \tilde{J}_{i} = -\sum_{j=1}^{n-1} \tilde{D}_{ij}^{n} \frac{\partial C_{j}}{\partial x} (i=1,2,...,n-1)$$

 \Box n-component system = (n-1)² interdiffusion coefficients

- More complications: Dependence on composition
- Experimental data on interdiffusion, tracer diffusion and self diffusion coefficients used to evaluate Atomic Mobilities, which are more fundamentally related to individual elements

Experimental Work

Pure Mg and Al discs polished to 0.05µm finish; placed in contact with each other and clamped in a stainless steel jig

Diffusion annealing carried out in tube furnace with couple sealed in evacuated quartz capsule

- □ SEM and Optical for Diffusion Structures
- EPMA point-by-point for concentration profiles
 Al-intensity measured
 - Balance Mg

Experimental Work

- Diffusion annealing done at three different temperatures each for three different times
- □ All couples used for studying phase growth kinetics
- □ Three couples (indicated by Squares) selected for EPMA analysis

Determination of Binary Interdiffusion Coefficients

Fick's Law:

$$\begin{split} \tilde{J}_i = -\tilde{D} \frac{\partial C_i}{\partial x} & \tilde{J}_i = \text{Interdiffusion Flux} \\ \tilde{D} = \text{Interdiffusion Coefficient} \\ \frac{\partial C_i}{\partial x} = \text{Concentration gradient} \end{split}$$

 $\tilde{}$

 \square \tilde{D} is a function of composition

□ Need to determine interdiffusion fluxes and concentration gradients from experimental profiles

Determination of Interdiffusion Fluxes^[1]

$$\tilde{J}_{i}(x^{*}) = \frac{C_{i}^{-} - C_{i}^{+}}{2t} \left[Y_{i}^{*} \int_{-\infty}^{x_{i}^{*}} \frac{(1 - Y_{i})}{V_{m}} dx + (1 - Y_{i}^{*}) \int_{x_{i}^{*}}^{\infty} \frac{Y_{i}}{V_{m}} dx \right]$$

$$Y_{i} = \frac{C_{i} - C_{i}}{C_{i}^{-} - C_{i}^{+}}$$

 V_m = Molar Volume (Assumed constant for this work)

- Fluxes determined directly from concentration profiles
- Avoids errors related to positioning of Matano plane
- □ *Multi*Diflux program:
 - □ Fitting of concentration profiles
 - Determination of gradients and fluxes

Diffusion Structures Developed in Mg/AI Couples^[1]

Two intermediate phases developed in accordance with Phase Diagram by Muray ^[2]

Planar Interfaces Developed

1. Kaustubh N. Kulkarni and Alan A. Luo; J. Phase Equilib. Diff.; 34; 2013; p. 104

2. T. B. Massalski ed.; Binary Alloy Phase Diagram; ASM International

Concentration and Flux Profiles ^[1]

- MultiDiflux^[2] program used for interdiffusion analysis
- Concentration profiles fitted with cubic hermite polynomials in each phase
- Concentration profiles in β phase assumed linear due to small gradient
- Interdiffusion fluxes evaluated directly from fitted concentration profiles
- Interdiffusion coefficients were then evaluated as functions of composition

1. Kaustubh N. Kulkarni and Alan A. Luo; J. Phase Equilib. Diff.; 34; 2013; p. 104

2. M. A. Dayananda and L. R. Ram-Mohan; *Multi*Diflux; Purdue University

Interdiffusion Coefficients in AI and Mg

- The activation energy for interdiffusion in Mg does not increases with increasing Mg
- □ Atomic radius of Mg (0.16nm) is 12% larger than that of AI (0.143nm)
 - □ AI matrix maybe strained with increasing Mg-content increasing the activation energy for migration

Interdiffusion Coefficients in Intermetallics^[1]

Activation energy for interdiffusion in Mg₁₇Al₁₂ does not vary much with composition

Average value of activation energy for interdiffusion in Al₃Mg₂ phase is 44±1.8 kJ/mol

Interdiffusion Coefficients: Comparison with Literature

Interdiffusion coefficients in β and γ phases at 425°C reported in various studies.						
	Interdiffusion coefficient (m ² /s)					
Phase	Reported by Heumann ^[1]	Reported by Funamizu by Heumann's method ^[2]	Reported by Funamizu by Kidson's method ^[2]	Estimated from present work at average composition of the phase		
β	1.7 x10 ⁻¹²	1.4 x10 ⁻¹²	1.1 x10 ⁻¹²	3 x10 ⁻¹²		
γ	2.1 x10 ⁻¹³	1.5 x10 ⁻¹³	1.2 x10 ⁻¹³	3 x10 ⁻¹³		

$$\tilde{D}_{i} = -\frac{W_{i}}{2t \cdot \Delta C_{i}} \int_{0}^{C_{i}^{1/2}} x \, dc_{i} = \frac{-\tilde{J}_{i}}{\left(\frac{\Delta C_{i}}{W_{i}}\right)}$$

- This is the FIRST report on Interdiffusion Coefficients and Activation Energies as functions of compositions in Mg-Al Binary System
- The interdiffusion coefficients evaluated assuming constant values over given phase regions as reported in literature match closely with the ones evaluated at average composition in the present study
 - 1. Th. Heumann and A. Kottmann; Z. Metallk.; Vol. 44; 1953; p. 139
 - 2. Y. Funamizu and K. Watanabe; Trans. Jap. Inst. Met.; Vol. 13; 1972; p. 278

Impurity Diffusion Coefficients in Al Hall's Method^[1]

Variable *u* is assumed to be a linear function of Boltzmann Parameter $\lambda = x/\sqrt{t}$

u is evaluated from relative concentration variable *C*'

$$\longrightarrow \frac{C_i - C_i^{-\infty}}{C_i^{+\infty} - C_i^{-\infty}} = C' = \frac{1}{2}(1 + erf(u))$$

Values of *h* and ϕ are evaluated from plot of *u* versus λ ; which are then used for evaluating interdiffusion coefficients

$$\implies \tilde{D} = \frac{1}{4h^2} + \frac{\phi\sqrt{\pi}}{2h^2} \exp(u^2)C'$$

Impurity Diffusion Coefficient

$$D_{i}^{*} = \lim_{C_{i} \to 0} \tilde{D} = \frac{1}{4h^{2}}$$

This method is suitable for estimating impurity diffusion coefficient in the terminal alloys where the concentration profile shows a long tail

Impurity Diffusion Coefficients in Al

Activation energy for impurity diffusion of Mg in Al agrees well with that estimated by Hirano and Fujikawa by Tracer technique

1. S. J. Rothman et al.; Phys. Stat. Solidi B; Vol. 63; 1974; p. K29

2. K. Hirano and S. Fujikawa; J. Nucl. Mater.; Vol. 69/70; 1978; p. 564

Phase Growth Kinetics

Incubation time in minutes

	380°C	400°C	420°C
β -Al ₃ Mg ₂	241	95	1
γ -Mg ₁₇ Al ₁₂	71	51	6

- Parabolic growth indicates diffusion controlled growth of both intermetallic phases
- Growth of β phase is faster than γ. However, incubation times for β are also higher at all temperatures

Activation Energies for Growth

Phase	Activation Energy for Growth (kJ/mol)				
	Funamizu et al. ^[1]	Brubaker et al. ^[2]	Present Work		
β -Al ₃ Mg ₂	62.8 ± 2.1	83.2 ± 10.8	37.3 ± 4.1		
γ -Mg ₁₇ Al ₁₂	143.7 ± 1.7	185.9 ± 7.4	187.7 ± 1.9		
	Weld treatment for 15 min at 400°C and most experiments then done below 400°C	$h^2 = kt$ i.e. Incubation time not considered	$h^2 = kt + c$ & No weld treatment a higher temperature		

□ The differences on account of

Pre-weld treatment in case of Funamizu et al. (phase may have nucleated)
 not accounting for incubation time by Brubaker et al.

Agreement with Brubaker et al. for γ-phase having lower Incubation time

- 1. Y. Funamizu and K. Watanabe; Trans. Jap. Inst. Met.; Vol. 13; 1972; p. 278
- 2. C. Brubaker and Z. K. Liu; Magnesium Technology 2004; ed. Alan Luo; TMS, 2004; p. 229

Conclusions

- Multiphase diffusion couples assembled at 380, 400 and 420°C showed presence of two intermediate layers viz. Al₃Mg₂ (β) and Mg₁₇Al₁₂ (γ)
- FIRST report on interdiffusion coefficients and activation energies as functions of compositions in binary Mg-AI system
 - Activation energy for interdiffusion increased with Mg-content in FCC AI possibly due to larger atomic size of Mg
 - \Box Activation energy does not change with composition in HCP Mg and inMg₁₇Al₁₂ intermetallic
- Activation energy for impurity diffusion of Mg in AI measured by Hall's method was found to be 105.4±4.2 kJ/mol
- \Box Parabolic growth of both β and γ phases suggest diffusion controlled growth
- Activation energy for the growth of AI_3Mg_2 (β) was found to be much lower than that of $Mg_{17}AI_{12}$ (γ) however, the incubation time for the former was higher