

Integrity **★** Service **★** Excellence

Materials Susceptibility in Contaminated Alternative Fuel

22 July 2013

Wendy J. Goodson, PhD Principal Investigator/Technical Lead Materials and Manufacturing Directorate Wright-Patterson AFB, OH 45433 wendy.goodson@wpafb.af.mil

Biocorrosion* in the AF?

*DoD definition of corrosion = deterioration of metallics and non-metallics

Systems exposed to extended moisture, standing water, biological fluids

Fuel systems and infrastructure

What is the **frequency** of biocorrosion in the AF?

How do rates of (aerobic) biocorrosion compare to other types of corrosion?

3

Biodiesel B20 Issues

Collaboration with Dr. Bradley Stevenson & Blake Stamps, OU

- quarterly field assessments
- microbiome analysis: liquid phases and biofilm
- enrichments/isolations
- in-tank and in-lab corrosion study
 - metabolite analysis for fuel degradation (Suflita lab)

Jet Fuel certification

Current fuel certification process:

- includes materials compatibility testing
 - 33 metallic, 38 non-metallic materials
 - 28 day exposures, elevated temperatures (250°C)
- may include testing for microbial growth (O. Ruiz, AFRL/RQ)
 - co-inoculum: B. licheniformis, P. aeruginosa, C. resinae

Day 2

Day 42

Jet A

Jet A/hydrorenewable jet (HRJ) blend

Materials Susceptibility to Contaminated Alternative Fuel: APPROACH

MATERIALS, 2 phases:

- non-metallics (2012-2013)
 - coatings
 - bladder materials
 - sealants
 - insulating materials
 - hose materals
 - foam
- metallics (2013-2014)

EXPOSURES

- Jet A or Jet A/HRJ blend
- 1:1 mix of fuel:Bushnell-Haas medium
- Inoculum: enriched soil sample
- 60 day exposure
- Static @ 28°C, no medium exchange

ASSESSMENTS: ASTM standard methods

• Tensile

- Hardness (Shore A and Pencil)
- Elongation
 - n Lap shear
- Volume swell

Collaboration with Dr. Oscar Ruiz (AFRL/RQPF), Susan Mueller, Lisa Brown and Bill Fortener (Univ. of Dayton Research Institute)

Materials Exposures

Volume swell specimens

Tensile specimens

Material degradation at fuel:medium interface

Distribution Statement A. Approved for public release. Distribution unlimited.

Results: Materials Testing

Materials Testing Results: Pass/Fail relative to uninoculated Jet A

			SEALANTS				BLADDERS		HOSE	WIRING INSULATION
		inoculated	Polysulfide Mn - cure	Polysulfide	Polysulfide DiCr cure	Fluorosilicone	Nitrile	Polyurethane	Acrylic Nitrile	Nylon
TENSILE	Jet A	+	FAIL	PASS	PASS	PASS	PASS	PASS	PASS	PASS
	JetA/HRJ	-	PASS	PASS	PASS	FAIL	FAIL	PASS	PASS	PASS
	JetA/HRJ	+	PASS	PASS	PASS	FAIL	FAIL	PASS	FAIL	PASS
ELONGATION	Jet A	+	FAIL	FAIL	FAIL	PASS	PASS	PASS	PASS	PASS
	JetA/HRJ	-	PASS	PASS	PASS	PASS	PASS	PASS	PASS	FAIL
	JetA/HRJ	+	FAIL	FAIL	FAIL	PASS	PASS	FAIL	PASS	FAIL
VOL SWELL	Jet A	+	FAIL	FAIL	PASS	PASS	FAIL	FAIL	PASS	NA
	JetA/HRJ	-	PASS	PASS	PASS	PASS	PASS	FAIL	FAIL	NA
	JetA/HRJ	+	FAIL	FAIL	PASS	PASS	PASS	FAIL	FAIL	NA

Microbiome Analysis

• DNA extracted from biofilms formed on materials

- 4 sealants (3 polysulfide, 1 polythioether)
- polysulfide electrical potting compound
- 2 coatings (nitrile and polyimide epoxy)
- nitrile bladder material

• Amplification of 16S rDNA, 454 seq, QIIME

QIIME analysis by Dr. Brad Stevenson and Blake Stamps, OU

What's Next?

- Are Achromobacter piechaudii. and/or Pseudomonas stutzeri necessary and sufficient to cause material degradation?
 - 2 polysulfide sealants will undergo further analysis
 - Inocula:
 - A. piechaudii alone
 - P. stutzeri alone
 - A. piechaudii/P. stutzeri co-inoculum
 - Original soil enrichment
- Mechanism of degradation to be investigated by FTIR, XPS

Summary

- **Rates and frequency** of biocorrosion in the AF are poorly understood.
 - field studies underway
 - increasing awareness amongst maintainers
- 'Green' initiatives in **alternative fuels** and **non-Cr material systems** have the potential affect biocorrosion rates.
- AFRL is taking proactive approach to understanding the potential impact of these initiatives.
 - Of 22 polymeric materials tested, at least 3 were negatively affected by inoculated fuel; 5 more were negatively affected by HRJ/Jet A and/or microbes.
 - Fuel type, not material type, determined microbial community associated with the material.
 - Mechanism of polymer degradation will be investigated.
 - Metals in phase II

Acknowledgments

AFRL/Mat'ls and Manufacturing Directorate Microbial Contamination of Materials Team

- Carrie Drake
- Tyler Huelsman
- Pamela Lloyd
- Lloyd Nadeau
- Lt. David Thurber
- Dr. Sandra Zingarelli

AFRL/Aerospace Systems Directorate Fuel Microbiology Team

- Dr. Oscar Ruiz
- Susan Mueller
- Lisa Brown

University of Dayton Research Institute

- Bill Fortener
- David Claiborne

University of Oklahoma

- Dr. Bradley Stevenson
- Blake Stamps

Funding: AFRL Materials and Manufacturing Directorate Corrosion IPT

