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Experimental Properties of Fluids Group

Welcome
Highlights

The Experimental Properties of Fluids Group provides the underlying measurement
infrastructure for thermodynamic and transport properties of fluids (gaseous and liquid)

- ) ) T ) MIST paper highlighted in Energy and Fuels laurnal
that is required by industry and government, The Group develops and maintains high

accuracy instruments and apparatus for a wide range of pure fluids and fluid miztures, Body of Evidence: Mew Fast, Reliable Method to Detect
We cover nonpolar, polar, dipolar aprotic, and agueous fluids that may consist of one Gravesoil

component, or many hundreds of components, Our measurements extend over wide

ranges of temperature, pressure and composition. We apply our instrumentation to The Joint MIST-4G4 Warkshop on Cdaor Masking

technically important fluids (fuels, working fluids, etc.) that are critical to industey, Al of
our work is closely integrated with the activities of the Theory of Fluids Group (which
develops thermodynamic and transport property models for fluid properties), and the STGH
Thermodynamics Research Center, (which develops the largest thermophysical property
databases). Our efforts are leveraged by collaboration with universities, industry
consortia, and standards organizations,

Staff Directory

Alurmni
In addition to providing the Division's analytical cheristry laboratory, NMR laboratory
(Muclear Magnetic Resonance), and calibration facility, the Group's research activities are
in four main areas.

In Memariam

Staff Speaker Topics




Experimental Properties of Fluids Group
Thormas 1. Bruno, Group Leader

thormas.bruno@nist.gov

General Information:

303-497-51538 Telephone
303-497-5044 Facsimile

325 Broadway
Mailcode 835.07
Baoulder, CO 80305-3337

Programs/Projects

Working/Functional Fluids—The conversion of primary energy (e.g. heat generated by
the combustion of a fuel) into useful work most often invalves a working fluid operating
in a thermodynamic cycle, Examples include a steam ..

Energetic Materials—Energetic materials, as distinct from fuels, include explosives,
propellants and ignitable liquids, Cne typically associates the study of energetic
materials with forensics, in the ..

Fuels—Energy is one of the most critical problems facing the United States, with
technical, economic and public policy aspects. Decision makers depend on reliable and
ohjective characterization of fuels ..

Standard Reference Fluid Measurements—Property measurements of the very highest
accuracies are important for developing the thermodynamic and transport property
models for working fluids and reference fluids, Mare than simply providing ...







Fit-for-Purpose:

* A capstone of QA principles

— product should be suitable for the intended
purpose

* fulfilling a customer’s requirements, needs or desires
 whether or not a unit meets quality

* resources should not be squandered to produce higher
qguality than is necessary

* conform to generally accepted standards
(accreditation or quality assurance body)

* "in spec” or "out of spec”
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Fit-for-Purpose:

* A capstone of QA principles

— product should be suitable for the intended
purpose
» Specifications
— Test methods and procedures
— Rubrics, for comparison

* Properties

— Often very empirical

— Cost, simplicity driven

 Development driven by what can be measured






An Alternative:

 Fundamental Properties, rather than “fit-for-
purpose” properties
— Fundamental properties are linked to fundamental
theory
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An Alternative:

 Fundamental Properties, rather than “fit-for-
purpose” properties
— Fundamental properties are linked to fundamental

theory
* Math <¢=ms=) Measurement

— Fundamental properties derive from atoms and
molecules

* Explicit recognition that composition determines
property



Ya canna
change the
laws of
physics!



Fuel Test Methods:

At the top of the
Volatility < list for good

Vapor Pressure reasons!
Cetane index

Antiknock index

Gravity

Acidity

Color

etc., etc....




Distillation Curve???

* For a complex mixture, it is a plot of the distillation
temperature against cut fraction

— T vs. Vol
— Tvs. 100 mL Volume
— Tvs. Volume %
(sometimes expressed as % evaporated)




an, Designation: D 86 - 97

Standard Test Method for
Distillation of Petroleum Products at Atmospheric Pressure’

This standard is issued under the fixed designation D 86; the number i i fe the ion i the year of

original adoption or, mlhemofmomtbeyuroflmmmAnmbummﬁde:yu:dhﬂmnlA

superscript epsilon (¢) indicates an editorial change since the last revision or reapproval.

This specification has been approved for use by ies of the De of Defense.
1. Scope? D 2892 Test Method for Distillation of Crude Petroleum

1.1 This test method covers the atmospheric distillation of (15-Theoretical Plate Column)® X

petroleum products using a laboratory batch distillation unit D 4057 Practice for Nganual Sampling of Petroleum and
to determine quantitatively the boiling range characteristics Petroleum Products

D 4177 Practice for Automatic Sampling of Petroleum and
Petroleum Products’

D 4953 Test Method for Vapor Pressure of Gasoline and
Gasoline Oxygenate Blends (Dry Method)®

D5190 Test Method for Vapor Pressure of Petroleum

of such products as natural gasolines, light and middle
distillates, automotive spark-ignition engine fuels, aviation
gasolines, aviation turbine fuels, 1-D and 2-D regular and
low sulfur diesel fuels, special petroleum spirits, naphthas,
white spirits, kerosines, and Grades 1 and 2 burner fuels.

: 9 : Products (Automatic Method)®
.122 The test'ngethod 13 (:lmgned for the analys!s.of D5191 Test Method for Vapor Pressure of Petroleum
distillate fuels; it is not applicable to products containing Products (Mini Method)®

appreciable quantities of residual material.
1.3 This test method covers both manual and automated DSP:SD zdu::‘(tl lMineth”:demf('(’);_ Xmm;m of Petoleom

instruments. In cases of dispute, the manual apparatus and D 5949 Test Method for Pour Point of Petroleum Products

procedure shall be the referee test method. (Automatic Pressure Pulsing Method)®
1.4 Unless otherwise noted, the values stated in SI units D 5950 Test Method for Pour Point of Petroleum Products
are to be regarded as the standard‘_The values given in (Automatic Tilt Method)®
parentheses are provided for information only. D 5985 Test Method for Pour Point of Petroleum Products
1.5 This standard does not purport to address all of the (Rotational Method)®
safety concerns, if any, associated with its use. It is the E 1 Specification for ASTM Thermometers”
responsibility of the user of this standard to establish appro- E 77 Test Method for Inspection and Verification of
priate safety and health practices and determine the applica- Thermometers’
bility of regulatory limitations prior to use. E 1272 Specification for Laboratory Glass Graduated
linders®

2. Referenced Documents

o andards®
2.1 All standards are subject to revision, and parties to 2.3 IP St ,’d-‘_ 5
agreement on this test method are to apply the most recent IP 69 Determination of Vapour Pressure—Reid Method
edition of the standards indicated below, unless otherwise IP 123 Petroleum Products—Determination of Distillation

pecified, such as i tractual agreements or regulato Characteristics . y P
:ults, whc:s: ;ﬂ?:rlseg:ns of the methl::;(t;) i(;:nﬁﬁed mg IP 394 Determination of Saturated Vapour
IP Standard Methods for Analysis and Testing of Petro-

E 1405 Specification for Laboratory Glass Distillation
Flasks®

be required. 5
2.2 ASTM Standards: leum and Related Products 1996—Appendix A
D97 Test Method for Pour Point of Petroleum? 3. Terminology
D323 Test Method for Vapor Pressure of Petroleum 3.1 Definitions:

Products (Reid Method)? i /

D 850 Test Method for Distillation of Industrial Aromatic mﬁ:l'clh :I.ha’g - dget;ol:lclzw ,djnsﬁ—nth“? o\[rlolﬂuma s]e( o;m;mx

Hydrocarbons and Related Materials* L o
Ao ’ specified in Table 3.
D 1078 Test Meﬂ:od for Distillation Range of Volatile 3.1.2 decomposition, n—df’ a: hiydrocarbon, the:pyeoiysis
pame Laguids or cracking of a molecule yielding smaller molecules with

lower boiling points than the original molecule.
3.1.2.1 decomposition point, n—the corrected thermom-

! This test method is under the jurisdiction of ASTM C i D-2 on

Petroleum Products and Lubricants and is the direct responsibility of Subcom-

mittee D02.08 on Volatility. S
lnthel?theeqmvalen(lmmﬂhodspubhﬂmdun@nhcdmmonl?ln 3 Annual Book of ASTM Standards, Vol 05.02.

It is under the jurisdiction of the St. © Annual Book of ASTM Standards, Vol 05.03.

Current edition approved Nov. 10, 1997. hlbllshedFebmlry 1998.
2 This test method is a complete rewrite of D 86 - 96.

3 Annual Book of ASTM Standards, Vol 05.01.

4 Annual Book of ASTM Standards, Vol 06.04.

7 Annual Book of ASTM Standards, Vol 14.03.

* Annual Book of ASTM Standards, Vol 14.02.

> Available from the Institute of F 61 New Cavendish St,, London,
WIM 8AR, UK.
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Anything Wrong with it?

The D-86 distillation curve has no basis in theory, and
cannot be modeled.

— temperatures are not thermodynamic state points
— value comes from standardization

Numerous sources of uncertainty in T and V

Initial boiling temperature is invalid
— first drop at the receiver

— boiling starts long before this

— error (systematic) is 7-15 °C



Standardized Voodoo
- Dr. Willie E. May, NIST




ADC Analytical Protocol for Complex Fluids:

— temperatures are true thermodynamic state points
— consistent with a century of historical data

— temperature, volume and pressure measurements of low
uncertainty — EOS development

— composition explicit data channel for qualitative,
quantitative and trace analysis of fractions

— Explicit identification of azeotropes

— energy content of each fraction

— corrosivity of each fraction

— greenhouse gas output of each fraction

— thermal and oxidative stability of the fluids
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‘€& chromatographic
> syringe
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Commercialized by Sigma Aldrich
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Choosing a Biodiesel Fuel Feedstock

- Grown locally Triglyceride

" geography ANAANANANAANAN
- climate HzT_O
A ANANANATNAANS

- availability |

(o)
hemo” NN

* Feedstock oil determines
- fatty acid content
- FAME profile (composition and degree of unsaturation)

- resulting properties of the biodiesel fuel
* cold flow properties
* oxidative stability

* energy content
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Cracking products and —
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products
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lower flask heating
enclosure, aluminum

receiver control PRT
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calibrated
volume pressure temperature

receiver controller controller

Calibrated Volume Receiver

thermocouple
_—3outlet
Transfer Adapter
from reduced pressure
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|A:-buttonvalve jacket — P B collection
volume
-wgf— calibrated
<«— adapter valve with septum side arm
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inlet S
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Temperature (T, °C)
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R - :
FAMEs

- Soybean-based biodiesel fuel 0

methyl palmitate

Soybean plant

methyl decanoate




Distillation curves for cuphea (CME) vs. soy (SME) -based
biodiesel fuels

380 -
]
360 - . o
¢ ¢ & ¢ ¢ 4 o s s s 0 * - a
340 11300 -
CME P
O 280 -
T, 320 - " ®
ﬁ 20 { TN L &
Eﬁ 300-240-::::... & .
= "
E 280 | o s .
% 20 40 60 N - . m
5 260 . " o " ¢ SME
240 I L = " CME
i A diesel
220 I I [ I I I I I 1
0 10 20 30 40 50 60 70 80 S0
Distillate Volume Fraction, %

- The temperature range from 5 % to 90 % distillate volume fraction for CME
spans 130 °C, whereas for SME this temperature range spans only 25 °C.




Distillation curves for SME (Soy-based B100) compared to
CME (cuphea-derived biodiesel fuel

Over 80 % C18 FAMES
z
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flow properties typical Distillate Volume Fraction, %

of soy-based biodiesel
fuels



Chromatograms of four distillate volume
fractions for soybean-based biodiesel fuel

(a) SME Biodiesel Fuel

methyl
palmitate

methyl oleate

methyl
stearate

0.025%

methyl linoleate

T T 1 f
185 195 | 1

16.5 17.5
RT

10%

T T 1
185 195

50%

80%

T T 1 T
18.5 195

16.5 175
RT

16.5 175
RT

Soybean plant




Chromatograms of four distillate volume
fractions for cuphea-based biodiesel fuel

(b) CME Biodiesel Fuel

0.025% | 30%
methyl caprate
methyl
caprylate
4.5 6.5 8.5 10.5 125 14.5 16.5 185 4.5 6.5 8.5 10.5 125 14.5 16.5 185
RT RT
70% o
80% methyl oleate
methyl palmitate
. methyl
methyl myristate linoleate
TN ) e
4.5 6.5 8.5 10.5 12.5 14.5 16.5 18.5 4.5 6.5 85 10.5 125 14.5 16.5 185
RT RT

Cuphea plant




Composite enthalpy of combustion
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Soybean plant

« The enthalpy of combustion for the biodiesel fuels SME and CME presented at four

distillate cuts, 0.025 % (the first drop), 10 %, 50 %, and 80 %.
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Enerpy & Fuck DN, 15, 1050-3797

Maodel for the Thermodynamic Properties of a Biodiesel Fuel
Marcis 1. Huber, Enc W. Lemman, Andrei Kerskov, Lisa S, ()" and Thomes J. Brona®

Thermopision Froperter Divivion Natioeal ferilisle of Siaadards and Techanlogy Fosider, OO
Recelved February 23, 2009, Revired Manwscripd Recelved My 1, 2009
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Helmholtz Equation of State

* Formulated in terms of a(T, p) instead of p(T, p)

a(p,T)=a’(p,T)+a'(p.T)

ideal gas contribution residual contribution

e All single phase properties can be calculated as derivatives of
the Helmholtz energy

(3
op ),

e Typical form of residual contribution

r

@ (0.7)= :T =D N7k + Y N e

5:£ =
P

Old Man
Helmholtz

summations typically have 4-20 terms

— |



Select Properties to Display

E stimated critical properties
Temperature: 19619 K
Prezsure: 5.0505 MPa
Denzity: 9.7532 mol/dne

_ @ X

Temperature | Pressure| Density | Enthalpy| Entropy Themodynamic | Transport Misc. | Deivative | c ts and "
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