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• A capstone of QA principles 

– product should be suitable for the intended 
purpose 

• Specifications 
– Test methods and procedures 

– Rubrics, for comparison 

• Properties 
– Often very empirical 

– Cost, simplicity driven 

• Development driven by what can be measured 
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An Alternative: 

• Fundamental Properties, rather than “fit-for-
purpose” properties 
– Fundamental properties are linked to fundamental 

theory 
• Math                   Measurement 

 

– Fundamental properties derive from atoms and 
molecules 
• Explicit recognition that composition determines 

property 





Fuel Test Methods: 

• Volatility 

• Vapor Pressure 

• Cetane index 

• Antiknock index 

• Gravity 

• Acidity 

• Color 

• etc., etc…. 

At the top of the 
list for good 
reasons! 



Distillation Curve??? 

• For a complex mixture, it is a plot of the distillation 
temperature against cut fraction 

 
– T vs. Vol 
– T vs. 100 mL Volume 
– T vs.  Volume % 

         (sometimes expressed as % evaporated) 
   
 
  

 
 

 
     
    







Anything Wrong with it? 

• The D-86 distillation curve has no basis in theory, and 
cannot be modeled. 
– temperatures are not thermodynamic state points 

– value comes from standardization 

 

• Numerous sources of uncertainty in T and V 

 

• Initial boiling temperature is invalid 
– first drop at the receiver 

– boiling starts long before this 

– error (systematic) is 7-15 °C  

 



Standardized Voodoo 
        - Dr. Willie E. May, NIST 



ADC Analytical Protocol for Complex Fluids: 

 
 

– temperatures are true thermodynamic state points 

– consistent with a century of historical data 

– temperature, volume and pressure measurements of low 
uncertainty – EOS development 

– composition explicit data channel for qualitative, 
quantitative and trace analysis of fractions 

– Explicit identification of azeotropes 

– energy content of each fraction 

– corrosivity of each fraction 

– greenhouse gas output of each fraction 

– thermal and oxidative stability of the fluids 
 



Bore scopes to observe the fluid 

in the kettle and the bottom of the 

take -off 

Advanced Distillation Curve (ADC) 
Apparatus 

Two thermocouples – T1 meas. 

kettle temp , T2 meas. head temp 

Sampling adapter designed to 

allow instantaneous sampling of 

distillate (~7mL) for analysis 

Level-stabilized receiver 

designed to improve the 

precision of the volume 

measurement 



Sampling  Adapter & Level Stabilized Receiver 

Commercialized by Sigma Aldrich 



Choosing a Biodiesel Fuel Feedstock 

• Grown locally 

• geography 

• climate 

• availability 

• Feedstock oil determines 

• fatty acid content 

• FAME profile (composition and degree of unsaturation) 

• resulting properties of the biodiesel fuel 

• cold flow properties 

• oxidative stability 

• energy content 

 

 

Triglyceride 



Much higher temperatures than are 
encountered with petro diesel fuel 

Soy Based Biodiesel Fuel: 



What’s going on here??? 

Soy Based Biodiesel Fuel: 



Use the composition 
explicit data channel to 
find out 
 
 
 
 
 

Diels Alder products 
forming 



Use the composition 
explicit data channel to 
find out 
 
 
 
 
 

Diels Alder products 
forming 

Cracking products and 
lots of Diels Alder 
products 
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Slopes are the same 

No jump! 
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83 kPa 

1 kPa 

83 kPa, really slow, 2.5 hrs 



FAMEs 

• Soybean-based biodiesel fuel 

 

 

 

 

 

 

• Cuphea plant-based biodiesel fuel 

Cuphea plant 

Soybean plant 

74 % 

11 % 

24 % 

54 % 



Distillation curves for cuphea (CME) vs. soy (SME) -based 

biodiesel fuels 

• The temperature range from 5 % to 90 % distillate volume fraction for CME 
spans 130 °C, whereas for SME this temperature range spans only 25 °C.  
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Distillation curves for SME (Soy-based B100) compared to 

CME (cuphea-derived biodiesel fuel 
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Evidence of possible 

azeotrope 

May improve cold 

flow properties typical 

of soy-based biodiesel 

fuels 



Chromatograms of four distillate volume 

fractions for soybean-based biodiesel fuel 

Soybean plant 

  

  

 

(a) SME Biodiesel Fuel 

methyl 

palmitate 

 methyl 

stearate 

 

methyl oleate 

 methyl linoleate 

 



Chromatograms of four distillate volume 

fractions for cuphea-based biodiesel fuel 

Cuphea plant 

  

  

 

methyl caprate 

 

methyl myristate 

methyl palmitate 

methyl oleate 

methyl 

linoleate 

 

methyl 

caprylate 

 

(b) CME Biodiesel Fuel 



Composite enthalpy of combustion 

• The enthalpy of combustion for the biodiesel fuels SME and CME presented at four 
distillate cuts, 0.025 % (the first drop), 10 %, 50 %, and 80 %.  
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Take Home Messages: 

 



NOT:  
you’re doing it 

wrong, do it my 
way 



BUT RATHER: 
The move to fundamental properties offer an 
alternative with many powerful advantages 



Helmholtz Equation of State 

• Formulated in terms of a(T, ρ) instead of p(T, ρ) 

 

 
• All single phase properties can be calculated as derivatives of 

the Helmholtz energy 
 

 

 

• Typical form of residual contribution 
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