

Role of Free Radical Kinetics in Biocorrosion

C. Mark Maupin

22nd July 2013 Workshop on Alternative Fuels and Materials: Biocorrosion

Fuel Bio-Degradation by Free Radical Chemistry

Importance of Accounting for Protein Structure

- •Substrate (Fuel) selectivity —Substrate binding
 - -Active site topology
- Reaction energetics
 - -Electrostatic
 - -Solvation effects
- Reaction entropies
 - -Steric effects
 - conformations of the reactants, products and transition states

Enzymatic Hydrocarbon Biodegradation

- Glycyl Radical enzymes (GREs)
 - -Utilize amino acid based radicals for catalysis
 - Glycine residue to harbor the radical
 - Cysteine residue for catalysis
- Fumarate addition reaction catalyzed by the GRE enzyme family —Benzylsuccinate synthase (BenzSS) – Aromatic fuels —Alkylsuccinate synthase (AlkSS) – Alkane fuels
- •X-ray crystal structures not available for BenzSS or AlkSS —Sensitivity to oxygen has precluded structural characterization

Understanding Enzymatic Free Radical Kinetics

Homology Modeling: Protein Structure Determination

- •Uses structural information from related proteins
 - -Template GREs for BenzSS's model
 - Glycerol Dehydratase (GDH)
 - GRE from Archaeoglobus Fulgidus
 - Pyruvate Formate Lyase (PFL)
- •All these GREs have a conserved
 - -Glycine/Cystiene dyad
 - -Common 3-D structural motif
 - 10 stranded $\alpha\text{-}\beta$ barrel around the active site
- •3-D structure of BenzSS
 - -based on X-ray crystal structures from these GREs

Homology Modeling Results

	BSSa	GDH	GRE (Arch Fulg.)	PFL	HPA-D
BSSa	-	30%	27%	26%	24%
GDH	0.7 Å	-	36%	28%	29%
GRE (Arch. Fulg)	1.1 Å	1.1 Å	-	23%	27%
PFL	1.1 Å	1.1 Å	1.2 Å	-	22%
HPA-D	1.2 Å	1.2 Å	1.3 Å	1.3 Å	-

- •Significant structural similarity in spite of relatively low sequence identity
- 10 stranded α-β barrel around the active site is also conserved

Vivek S. Bharadwaj, V. S., Dean, A. M., Maupin, C. M. (2013) JACS (accepted)

Molecular Dynamics Simulations

- •Ensure stability of the homology model in a solvated environment —185 ns MD simulations indicated a stable active site
- Evaluate critical enzyme-substrate interactions
 - –Hydrogen bonding networks
 - -Hydrophobic interactions
- •Calculate binding energetics: Molecular Mechanics/Generalised Born Solvent Accessibility (MM/GBSA) calculations (40 ns)
 - –Energy decomposition
 - -Alanine mutational scanning
 - Evaluate contribution of amino acids to binding

Toluene Binding Pocket

- •Hydrophobic residues aid toluene binding
 - -Leu390
 - -Tyr829
 - -Phe384

	% Occupancy		
Residue	Toluene	Toluene + Fumaric acid	
Leu491	22.5%	3.6%	
Leu390	14.3%		
Val708		81.9%	

•MD indicates feasible H-transfer distances —~3.2Å between methyl group of toluene and Cys492•

Fumaric Acid Binding Pocket: Substrate Interactions

		loluene
Glu509	61.9%	81.9%
Ser827		55.4%
Gln706	81.9%	41.5%
Gln512	23.9%	
Asn614	15.8%	

MM/GBSA & Alanine Scanning

- •Binding energy calculations on mutants
- Evaluate specific residue contributions to binding energy
- Strong hydrogen bonding interactions (fumaric acid)
- Several weaker hydrophobic interaction (toluene)
- Proposed experimental mutations

Effect on Toluene binding				
1	Mutation	$\Delta \Delta \mathbf{G}_{binding} = \Delta \mathbf{G}_{mutant} - \Delta \mathbf{G}_{wildty}$	/pe	
	F384A	1.9 ± 0.9 kcal/mol		
	L491A	1.2 ± 0.7 kcal/mol		
	L390A	2.0 ± 0.8 kcal/mol		
	V708A	1.1 ± 0.6 kcal/mol		
	Y829A 1.8 ± 0.7 kcal/mc			
Effect on Fumaric acid binding				
	E509A	5.4 ± 1.9 kcal/mol		
	Q706A	3.9 ± 1.9 kcal/mol		
	S827A	5.7 ± 1.8 kcal/mol		

Conserved Binding Site Residues

Hydrophobic residues aiding toluene binding (Phe 384, Leu390, Leu491 and Val 708) all are conserved. Tyr829 semi-conserved.

Hydrogen-bonding residues aiding fumaric acid binding (Ser827,Glu509 Asn614 and Gln706) are also conserved

Is the Structure Suitable for Catalysis?

•Hydrogen transfer distances in enzymes found to vary from 3.5 – 4.1 Å

Radical transfer distances similar to QM calculations

MD Simulations Indicate Feasible H-transfer Distances

• Productive radical transfer distances consistently observed in MD

System	Cys492∙S – Gly828Cα		Cys492•S – Toluene	
	Average (Å)	Productive*	Average (Å)	Productive*
BenzSS + Fumaric Acid	$\textbf{6.7} \pm \textbf{1.2}$	10.5%	-	-
BenzSS + Toluene	$\textbf{5.6} \pm \textbf{1.1}$	15.3%	$\textbf{6.7} \pm \textbf{1.5}$	10.8%
BenzSS + Toluene + Fumaric Acid	4.7 ±1.1	51.4%	$\textbf{5.3}\pm\textbf{0.7}$	5.8%

* <4 Å distance is considered productive

• Presence of both substrates leads to compact active site

•Sets the stage for QM/MM studies to re-evaluate the energetics in the protein environment

Dihedrals, Distances, and Feasible H-transfer

•Substrate & Product favor smaller dist.

- Different free energy profiles
- •Two distribution (empty)
- •One distribution (substrate)

Conclusions: Homology Modeling, Docking, and MD

- •Consistent enzyme structural basis established via
 - Homology modeling, docking studies, MD simulations and MM/GBSA binding energetics
- •Important amino acids for substrate binding identified
 - -Toluene binding
 - •Leu491, Leu390, Phe384, Val708, Tyr829
 - -Fumaric acid binding
 - •Ser827, Glu509, Gln706
- •Binding sites are conserved
- Binding of substrate shifts preferred dihedral to favor smaller H-transfer distances

Questions?

Acknowledgements

Vivek Bharadwaj Shubham Vyas, Anthony M. Dean

Funding: ONR MURI

