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Background

" Microbial biodegradation of fuels is
associated with decreased product quality,
compromised equipment performance, and
the biocorrosion of metal surfaces

®Changing fuel formulations are routinely
used in the existing carbon steel
infrastructure.

=" Many reports of increased corrosion
problems.



Hypothesis
We hypothesize that fuel-induced metal

corrosion is at least a function of:

i) the chemical composition of the fuel

ii) its inherent susceptibility to
biodegradation

iii) the contact of the fuel with
microorganisms that catalyze
biodegradation/biocorrosion
processes.
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Seawater Compensated Ballast Tanks

Cruiser (Ticonderoga Class), Destroyer (Arleigh Burke Class), Amphib (Wasp Class)

The use of different different diesel fuel blends can
lead to a host of biologically—catalyzed problems:

*Biocorrosion Cross contamination
'Biofouling of sensors Clogging of tuel lines
*Deterioration fuel quality Coalescer performance




Different Biocorrosion Zones
80% of the world's trade volume is transported by ships

mid section
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2 65% of ships have
sediment in their ballast

Adapted from: Heyer et al., 2013. Ship ballast tanks a
review from microbial corrosion and
electrochemical point of view Ocean Engineering

Zone

in a BallastTa

\_70:188-200.

I0xygen concentration Corrosion rate
nk
21% (in air) 0.10mmly
o
¥
<
0]}
@)
=
a
o
=)
a
¢)
=
H
-
)
H
pud o
)
=
<
i\‘ >0.38mmly
£
E
@
B
:
(&)
~0% 0.47mmly
(underbiofilm)




Steep Gradients in Oxygen in Fuel/Filter Sterilized
Seawater Incubations Inoculated with Marinobacter
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Steep Gradients in Oxygen in Fuel/Filter Sterilized
Seawater Incubations Inoculated with Marinobacter
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Fuels of Interest

Traditional petroleum-based fuels:
HSD, LSD, ULSD, F76, JP5

First generation biofuel:
FAME-Biodiesel

Second generation biofuels:
Algal-based F76,

Camelina-based JP5



Questions and Approaches

1) Composition of the fuels?
Gas chromatography-mass spectrometry

2) Can fuel support microbial growth?

Anaerobic incubations; but oxygen exposure
has important implications

3) What can a 'rar'g ted assay of the
metabolome tell us? 6C-MS

4) What microbes and activities should be
monitored?

Host of procedures

5) Impact of fuel formulations on
microbiologically induced metal corrosion?



First-Generation Biodiesel
World-wide annual biodiesel production, 1991-2012
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Freshwater and Marine Inocula Used to Examine
the Fate of Fuels Under Anaerobic Conditions

~__YeS _Exposure to Biodiesel pnO
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HC - Contaminated
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Biodiesel (BD) -Supported Anaerobic Microbial
Metabolism with Various Inocula
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Fate of Biodiesel vs. Other Fuels

60 -

Sulfate (mM)
S

Anaerobic Fuel/Seawater Incubations

Un-amended, JP5, F76

Algal F76, CamJP5, ULSD

Similar results regardless of
Inoculum (fresh or marine) or

prior exposure history to

Biodiesel hydrocarbon/methylesters
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Biodiesel and Carbon Steel Corrosion

Post Exposure Acid Cleaned 0

O.v"
Biodiesel

> Biodiesel is a mixture of fatty
acid methyl esters

» Methyl esters are hydrolyzed
to fatty acids within 60 days

» Fatty acids stimulate
anaerobic bacternal
communities leading to the

rapid corrosion of carbon
steel

> Aktas, D.F.; Lee, J. S_; Little, B. J_;
Ray, R. |_; Davidova, |. A_; Lyles, C.
N.: Suflita, J. M. Anaerobic
Metabolism of Biodiesel and Its

Impact on Metal Corrosion. Energy &
Fuels (2010), 24(5), 2924-2928
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First Generation
Biodiesels are Very

Labile




What About Other
Fuels?

‘Focus on ULSD
*Many reports of problems
with ULSD
Several hypotheses can be
advanced




ULSD: Is It Really Different?

*To make ULSD, refineries must treat it
severely

*Molecules are broken apart to release
the organosulfur moieties

*This changes several fuel properties:
density, viscosity, lubricity, etc

*Additives used to maintain performance
characteristics (e.g. often up to 2%
biodiesel)



Oil Desulfurization
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Need to Compare the
Biological Stability of HSD,
LSD & ULSD

Obtained Fuel Samples Directly
From the Refinery - Before Any
Additives
Incubated with Several Inocula —
Marine and Freshwater




Anaerobic HC biodegradation gene probes
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Sulfate Reduction by Incubations Containing
Seawater from a Navy Ballast Tank and
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4 Methane Production from a Methanogenic A
Consortium Capable of Hydrocarbon
30 Biodegradation
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GC-MS Comparison of Traditional and
Alternate Military Fuels

- before and after incubation in anaerobic seawater

Camelina
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Strict anaerobic incubations
JP-5 petro before

JP-5 petro after
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Less Stringent Anaerobic Incubations

~

Straight chain Branched Notable Fatty Metabolites or other
alkanes alkanes acids observations
Alkylated catechols,
benzoates, and phenols/a
JP5 ClO_ClS few low MW alcohols and
acids
Camelina- Alkylated catechols,and
C10-C18 benzoic acid / a few low MW
based JP5 .
alcohols and acids
F76 C11-C15 and C22 - Alkylated benzoates
Catechol and alkylated
Algal-based C10-C20 and C11-Co21 benzoates / a few low MW
F76/petro F76 Co 5 alcohols and acids
Soy-based BD Cll-C14 and A f C5'C18 and Ca6, C18:0/1/2 removed;
(20%) C22_C25 ew C2O Catechols
Alkylated catechols,
ULSD C11-C22 i benzoate, alkylated phenol
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Less Stringent Anaerobic Incubations

Straight chain Branched Notable Fatty Metabolites or other
alkanes alkanes acids observations
Alkylated catechols,

lated
Algal-ba w MW
F76/petr
Soy-based BD Cll-C14 and A few C5'C18 and Ca6, C18:0/1/2 removed;
(20%) C22_C25 C2O Catechols
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Clear Indication of
Aerobic Hydrocarbon
Metabolism
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Bacterial Communities in Less Stringent Anaerobic Incubations
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A Model Hydrocarbon-Degrading SRB

Desulfoglaeba alkanexedens strain ALDC
e g *Reduces sulfate

*Degrades
hydrocarbons via
fumarate addition

*Mineralizes C4-C,, n-
alkanes

Known to cause
localized corrosion of
carbon steel

*Syntrophic growth



Relative abundance

Mass Spectra of Alkylsuccinic Acid Metabolites
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Anaerobic Biodegradation of ULSD

Key West Seawater/Sediments
40 LF + Desulfoglaeba alkanexedens
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TIC overlay before and after incubation with ULSD
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Abundance
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But Why?? » Two ‘different’ ULSDs were used........
- One directly from a refinery the other from NAVY

- Slightly different when analyzed by GC/MS
cis  -additives? - H,S? - Signaling?
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1)

2)

3)
4)
5)

6)

Summary

FAME biodiesel is more labile than other fuel components
and can exacerbate metal biocorrosion

No difference in the susceptibility of HSD, LSD or ULSD to
anaerobic biodegradation in marine or freshwater
environments; additives in fuel likely important
Whenever fuel biodegradation was coupled to sulfate
reduction, the corrosion impact was high

Not all ULSDs are created equal; slight differences in
chemical composition can be important

Small amounts of oxygen can have a large impact on both
biodegradation and biocorrosion

The presence of the requisite microorganisms is
important; inoculation with a hydrocarbon-degrading
sulfate reducing bacterium
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