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Many properties of emulsions arise from interfacial rheology, but a theoretical understanding of the

effect of interfacial viscosities on droplet dynamics is lacking. Here we report such a theory, relating to

isolated spherical drops in a Poiseuille flow. Stokes flow is assumed in the bulk phases, and a jump in

hydrodynamic stress at the interface is balanced by Marangoni and surface viscous forces according to

the Boussinesq–Scriven constitutive law. Our model employs a linear equation of state for the

surfactant. Our analysis predicts slip, cross-stream migration and droplet-circulation velocities. These

results and the corresponding interfacial parameters are separable: e.g., cross-stream migration occurs

only if gradients in surfactant concentration are present; slip velocity depends on viscosity contrast and

dilatational properties, but not on shear Boussinesq number. This separability allows a new and

advantageous means to measure surface viscous and elastic forces directly from the drop interface.
1. Introduction

Droplet dynamics in flow reflects a number of properties of the

drop interface, and influences emulsion rheology and stability.1

For some time now, it has been understood that droplets placed

in a pressure-driven flow tend to be transported at a velocity less

than that of the undisturbed flow. For example, a clean spher-

ical viscous droplet lags behind the flow with a slip velocity

given by (2) and undergoes no lateral migration.2 In addition,

depending on the viscosity contrast, deformable particles

migrate either towards the flow centerline or away if initially

placed off-center.3–5 Recently, it was found that the presence of

insoluble surfactant would induce a cross-stream migration in

a spherical droplet.6 In this case, the symmetry present in the

spherical shape limit of a clean drop (prohibiting the lateral

migration of the droplet7) is broken, and the spherical surfac-

tant-covered droplet migrates toward the centerline of the flow.

Analysis of drop dynamics within the limit of Stokes flow and

micron-sized droplets are not limited to theoretical studies.

For example, migration of a droplet has been observed experi-

mentally.8,9 Additionally, experiments using a microfluidic

interfacial tensiometer have been developed to probe interfacial

dynamics and mass transfer processes for a micron-sized droplet

in a confined rectangular channel.10 Previous studies have

yielded measurements of dynamic multi-component interfacial

tension,11,12 and insights into other processes such as tip

streaming.13,14
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Droplet dynamics in flow fields represents a long-standing

problem, both theoretically and experimentally. However,

investigation into the effects of surface viscous forces has been

limited. In this work we generalize the results of Hanna and

Vlahovska6 to include the effects of surface viscous forces. Their

results are for a drop which remains spherical by assuming that

the capillary number is small; we adopt this assumption here as

well. This aids isolation of the effects of the surfactant on the

interface.

In order to avoid confusion when discussing interfaces free of

surfactant, when no surface viscosity is present the interface is

said to be clean. If surface viscosities are non-negligible (arising

from some surface agent whose total concentration remains

constant), the interface is referred to as being viscous. Interfacial

viscosity and elasticity correlates to and retards the rate of

droplet coalescence in emulsions.15,16 Here we determine their

effects on the dynamics of a spherical drop. We suggest that

measurement of these quantities yields a new route to charac-

terize interfacial viscosities, and therefore a new way to evaluate

emulsion properties.
2. Problem formulation

In this study, we will consider a neutrally buoyant drop of radius

a. The viscosity of the droplet is lh while the embedding ambient

fluid has a viscosity of h. The drop interface is considered

Newtonian, with surface shear viscosity ms and dilational

viscosity ks The drop is placed in unbounded plane Poiseuille

flow, vN ¼ (U0 � ay02)x̂, where U0 is the speed of the flow at the

centerline, and a is proportional to the curvature of the flow

profile. This flow is chosen because it excites both dilatational

and shear deformations of the droplet, in similar magnitudes. We

will consider initial drop locations both on and off the centerline
Soft Matter
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of the flow. It therefore is convenient to express the applied

velocity in a coordinate system centered on, and translating with

the droplet. In dimensional units, the velocity profile is

vN ¼ (� _gy � ay2)x̂ � U0
mig (1)

where the local shear rate experienced by the drop is _g¼ 2ay, and

y is the position of the droplet off the centerline of the flow. The

migration velocity U0
mig is the difference between the drop’s

velocity and the velocity of the undisturbed flow. In the absence

of surface viscous forces,2

U
0
mig ¼ � l

3lþ 2
aa2x̂: (2)

We consider that the drop may be covered with an insoluble,

non-diffusive, surfactant whose equilibrium concentration on the

interface is given by Geq. The corresponding tension in the

membrane is seq. When the interfacial surfactant concentration

is uniform, the interface is viscous; Marangoni effects arise when

the concentration has local variations.

In the absence of an imposed flow, the equilibrium shape of

the droplet is spherical due to surface tension effects. If creeping

flow conditions are assumed in the bulk phases, this shape can

be maintained in the presence of flow if the capillary number,

Ca ¼ hUc/seq, remains small. Here Uc is the characteristic

velocity, Uc ¼ aa2. The strength of surface viscous forces rela-

tive to the bulk viscous forces acting on the interface are

characterized by the dimensionless shear and dilational Bous-

sinesq numbers,

Bos ¼ ms

ha
;Bod ¼ ks

ha
: (3)

Gradients in the surface tension may arise due to non-unifor-

mities in the surfactant distribution stemming from convection of

surfactant on the interface. The ratio of viscous stresses to these

surface tension gradients defines theMarangoni number, Ma�1 ¼
hUc/[�Geq(vs/vG)]. The surface tension dependence on the local

surfactant concentration is nonlinear for arbitrary concentra-

tions.17,18 Here, however, we assume a linear equation of state

(for small deviations on local interfacial concentration G from its

equilibrium value Geq)

s(G) ¼ Ma(1 � G/Geq) + seq. (4)

In general, it is possible that surface viscosities depend on the

nonunifomities in G, but in the absence of any such model, we

ignore this possibility, implying that Bod and Bos are functions of

Geq only. Henceforth, all variables are rescaled with a, h, seq, Geq

as characteristic quantities.
2.1 Governing equations

The flow in the bulk phases is described using the Stokes equa-

tions, where the velocity v and pressure p satisfy

Vp ¼ ĥV2v, V$v ¼ 0, (5)

with ĥ ¼ 1 in the suspending fluid and ĥ ¼ l in the droplet. The

velocity field is continuous across the interface. Far from the

droplet, the velocity tends to the unperturbed imposed flow. At
Soft Matter
the interface, the jump in the viscous hydrodynamic stresses is

balanced by membrane surface forces,

kThdk$n̂ ¼ �2Hsn̂ + Vss � Vs$ss (6)

where Vs is the surface gradient operator, ss is the surface stress
tensor, H is the mean curvature of the interface, n̂ is the outward

point unit normal vector (for a sphere n̂ ¼ r̂), and k.k denotes

a jump in the quantity enclosed from the inside to the outside.

Here Thd ¼ �pI + ĥ[Vv + (Vv)†] is the bulk hydrodynamic stress

tensor, I is the unit tensor, and † denotes the transpose. For

a spherical droplet, the dimensionless mean curvature is 1. The

third term on the right-hand side of (6) is the force exerted on the

interface from surface viscous effects. Adopting the Boussinesq–

Scriven constitutive law for Newtonian interfaces gives19

Vs$ss ¼ 2BosDs + (Bod � Bos)(Is:Ds)Is. (7)

where

Ds ¼ 1

2

h
Vsv$Is þ Is$ðVsvÞ†

i
(8)

is the surface rate of deformation tensor, and Is ¼ I � n̂n̂.

Inserting (8) into (7) gives19

Vs$ss ¼ ðBod þ BosÞVsVs$v

þ½2Bosb : Vvþ ðBod þ BosÞ2HVs$v�
þBos½ � Vs � Vs � vs þ Kvs þ 2HðVsvÞ$n̂�
2ðb� 2HIsÞ$Vsðv$n̂Þ�

(9)

where b ¼ �Vsn̂, vs ¼ Is$v, and K is the Gaussian curvature.

For a viscous interface with a constant tension s ¼ seq, (6) in

conjunction with the conditions on the velocity field is sufficient

to solve for the flow past the spherical droplet. On the other

hand, if an insoluble surfactant is present and gradients in its

interfacial concentration develop, (4) modifies (6),

kThdk$n̂ ¼ 2Ma(G � 1)n̂ � MaVsG � Vs$ss. (10)

In this situation, in order to close the problem, a conservation

equation for the surfactant concentration is employed as an

evolution equation for G,

vG

vt
þ Vs$ðvsGÞ þ Gðv$n̂ÞðV$n̂Þ ¼ 0; (11)

where any diffusion flux has been neglected. On a sphere, V$n̂ ¼
2. Lastly, vs is the tangential surface velocity.
3. Solution for a spherical droplet

In the limit of a spherical droplet, exact expressions for the

velocity field can be obtained as a function of l, Bos, Bod, and, if

present, the concentration of surfactant. From the linearity of the

Stokes equations, the perturbation of the flow field about the

surfactant-covered droplet can be decomposed into two parts:

flow about a viscous drop, and flow induced from Marangoni

stresses.1 Therefore Umig will be decomposed as

Umig ¼ U0
mig + Us

mig. (12)
This journal is ª The Royal Society of Chemistry 2011
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Henceforth, excluding previously defined terms, a superscript

‘s’ will indicate terms arising from surfactant concentration

gradient effects, and a superscript 0 will indicate a viscous

interface. Owing to the spherical nature of the droplet, the

spherical coordinate system, (r, q, f), is adopted and all fields are

expanded in the basis of spherical harmonics (see Appendix A).

Using spherical harmonics, the fundamental set of velocity fields

is given by

vout ¼ cNjmq½uþjmqðrÞ � u�jmqðrÞ� þ cjmqu
�
jmqðrÞ

vin ¼ cjmqu
þ
jmqðrÞ (13)

where summation over repeated indices is implied. Details of the

basis functions, u�jmq(r), can be found in Appendix D.1,20Note that

this velocity field is naturally continuous across the interface. The

coefficients which define the far field velocity, cjmq
N can be found

in Appendix C. Similar to (12), the coefficients cjmq are decom-

posed as cjmq ¼ c0jmq + csjmq. Moreover, in the limit of a spherical

droplet, (9) simplifies by recognizing K ¼ 1, and b ¼ �Is.

Therefore, on a sphere, (9) reduces to

Vs$ss ¼ ðBod þ BosÞVsVs$v� 2BosðVs$vÞr̂
þ Bos½Vs � Vs � vs þ 3vs � 2Vsðv$r̂Þ�:

(14)

3.1 Viscous interface solution

Neglecting the effects of surfactant concentration gradients, the

coefficients cjmq are determined from the stress balance given by

(6). The condition that the drop remains spherical places an extra

constraint on the system, which overdetermines it if both the

normal and tangential components of (6) are employed.6 In order

to maintain sphericity, cjm2 ¼ 0 for j > 1 leaving cjm0 and cjm1 to

be determined from the tangential components of (6). For j ¼ 1,

all three components of (6) are used. Additionally, in order to

maintain sphericity, the jump in hydrostatic pressure across the

interface is balanced by a large tension (Ca � 1) and therefore

the effects of seq are not felt here.

Expressed in component form, (6), in conjunction with the

spherical harmonic expansion of (9) becomes,

soutjm 0 � s in
jm 0 ¼ �2Bod

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jð j þ 1Þp

c 0
jm 2

þ�Bosðj þ 2Þðj � 1Þ þ Bodjð j þ 1Þ�c 0
jm 0

(15)

soutjm1 � sinjm1 ¼ Bos(j + 2)(j � 1)c0jm1 (16)

soutjm2 � s in
jm 2 ¼ 2Bod

h
2c0jm2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jð j þ 1Þ

p
c0jm 0

i
(17)

Solving the above system for the coefficients cjmq yields, for j¼ 1,

c01m 0 ¼
1

3b

h ffiffiffi
2

p
b̂cN1m2 þ ð9þ 4Bod þ 6lÞcN1m 0

i
c01m1 ¼ cN1m1

c01m2 ¼
1

3b

h ffiffiffi
2

p
b̂cN1m0 þ ð12þ 2Bod þ 3lÞcN1m2

i (18)

where b ¼ 2 + 2Bod + 3l and b̂ ¼ 2Bod � 3 + 3l. When j > 1 we

have
This journal is ª The Royal Society of Chemistry 2011
c 0
jm 0 ¼

2j þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðj þ 1Þp

 
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðj þ 1Þp

cNjm 0 � 3cNjm2

1þ l� 2Bos þ jd

!

c0jm1 ¼
1

d
ð2j þ 1ÞcNjm1

c0jm2 ¼ 0 (19)

where d ¼ 2 + 2l + (1 + j)(Bos + Bod). Note how when j ¼ 1, Bos

does not enter c1mq, and when Bod ¼ 0, and Bos ¼ 0, the solution

was previously identified by Hanna and Vlahovska.6 Obtaining

an expression for the migration velocity similar to (2) requires

determining the difference between the undisturbed imposed flow

and the volume averaged velocity of the drop,

Umig ¼ �vNð0Þ þ 3

4p

ð
drop

vðrÞ dr: (20)

The only nonzero contribution to this integral are the u+1m2 modes,

yielding

Umig ¼
ffiffiffiffiffiffi
3

8p

r �� ðc112 � c1�12Þx̂� iðc112 þ c1�12Þŷþ
ffiffiffi
2

p
c102ẑ

�
(21)

This shows that the migration velocity of a spherical droplet is

only given by the j ¼ 1 modes. In the absence of surfactant, these

modes are not coupled to any other of higher order, and the

solution can be given in closed form.
3.2 Marangoni effects

The presence of interfacial viscous forces does not change the

functional form of the csjmq previously reported (6), and are

reproduced in Appendix F for completeness. Motivated by the

expansion of the velocity fields (13) in spherical harmonics, the

local surfactant concentration, G(q,f,t), will be expanded in

scalar harmonics as

Gðq;f; tÞ ¼ 1þ
XN
j¼1

Xj

m¼�j

gjmðtÞYjmðq;fÞ: (22)

Use of (11) along with (22) and (54) yields the evolution equation

for the coefficients gjm

vgjm

vt
¼ Cjm þ �Ujmj2m2

þLjmj2m2

�
gj2m2

þMa
h
W ðjÞgjm þJjmj1m1 j2m2

gj2m2
gj1m1

i (23)

It was noted previously that, for either a clean (G ¼ 0) or viscous

(G ¼ 1) interface, all harmonic modes are decoupled. The

nonlinear nature of (23) shows that the presence of surfactant

concentration gradients couples the modes together. Specific

details concerning the terms in (23) are given in Appendix F.

Once the amplitudes gjm are obtained, the decomposition of

cjmq gives

Us
mig ¼

Maffiffiffiffiffiffi
6p

p ð3lþ 2Þ
�� ðg11 � g1�1Þx̂� iðg11 þ g1�1Þŷþ

ffiffiffi
2

p
g10ẑ

�
(24)
Soft Matter
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as a migration velocity induced by gradients in surfactant

concentration.6
4. Results and discussion

In this section, first the results concerning a viscous interface are

shown, which include analytical expressions for a new slip

velocity and drop fluid circulation patterns observable in labo-

ratory experiments. Following that discussion, surfactant

gradient effects are introduced, the asymptotic limit of an

incompressible interface is explored, and the lateral migration

velocity is calculated as a function of Bos and Bod. Lastly,

numerical solutions for arbitrary surfactant concentration

gradients are discussed.
4.1 Viscous interface

To begin, we derive here the slip velocity of a drop with surface

viscosity and without surfactant concentration gradients.

Inserting the appropriate terms from (18), (19) and (47) into (21)

yields

Umig ¼ � 2Bod þ 3l

3ð2þ 2Bod þ 3lÞ x̂: (25)

In the limit of either high drop viscosity, or large dilational

viscosity, the rigid sphere slip migration is recovered, namely

Umig ¼ �1/3 x̂.
7 Moreover, it should be noted that the above slip

velocity is independent of the shear surface viscosity, Bos, a result

of the fact that Bos does not appear in (18). Therefore, if Bos is

small and Bod is large, there is fluid circulation in the drop, yet it

lags behind the flow as for a rigid sphere. As a final comment,

when Bod ¼ 0, (25) reduces to (2). The absence of Bos dependence

in the slip velocity is in agreement with Felderhof,21 who found

that the velocity and pressure fields produced by a droplet’s

response to a uniform flow are independent of the interfacial

shear viscosity.

Circulation patterns are readily measured experimentally.10

Previous theory22 considered the circulation patterns within and

on a droplet in microchannels. The velocity field at various

locations on the droplet was determined; however, these results

do not account for the interfacial viscous forces. Several points

are indicated on the droplet in Fig. 1 which will be of interest to
Fig. 1 Schematic of the droplet and velocity profile. Points of interest

are marked on and in the drop.

Soft Matter
us here. The velocity field given by (13) is converted to the

Cartesian coordinate system to highlight various velocity

components on and within the drop. In order to illustrate only

the circulation patterns, the slip velocity (25) has been removed

from the velocity field. Additionally, the drop is assumed to be on

the centerline of the flow (y0 ¼ 0). The x-component of the

velocities at points A and B are

vxðAÞ ¼ 5

3ð4þ 4Bos þ lÞ �
1

2þ 2Bod þ 3l
þ 7

12n
(26)

and

vxðBÞ ¼ � 5

3ð4þ 4Bos þ lÞ �
1

2þ 2Bod þ 3l
� 7

3n
(27)

where n ¼ 7(1 + l) + 12Bod + 10Bos. These velocity components

are dependent on the values of both Bod and Bos. Fluid at the

center of the droplet, denoted by point C, has an x velocity

component given by

vxðCÞ ¼ 1

2þ 2Bod þ 3l
(28)

which clearly has no dependence on Bos. In the limit of large Bod

this becomes vx(C) ¼ 0. The other velocity components here are

zero for all values of the parameters (at y0 ¼ 0). In (25) and (28)

we have isolated velocities that depend only on l and Bod;

a velocity independent of Bos would be ideal as well. The

following combination of points A, B, and C yield an x-velocity

which depends only on l and Bos,

4

5
vxðAÞ þ 1

5
vxðBÞ þ vxðCÞ ¼ 1

4þ 4Bos þ l
: (29)

The combination
4

5
vxðAÞ þ 1

5
vxðBÞ can be obtained from the

interfacial velocity measured 26
+
from the azimuthal axis from A

towards B.

Fig. 2 shows streamlines within the droplet in the x–y coor-

dinate plane. The figure contains three parts. In Fig. 2a, the shear

and dilational Boussinesq numbers are zero. Effects of Bod

become apparent in Fig. 2b, where Bod ¼ 10 while Bos ¼ 0. The

magnitude of the fluid velocity near the center of the drop has

greatly decreased. Lastly, the influence of Bos is isolated in Fig. 2c

in the case of Bos ¼ 10 and Bod ¼ 0. Streamline profiles with

other combinations of Bod and Bos are readily calculated; in

general, these are not qualitatively different from what is shown

in Fig. 2.

The position of the stagnation points located along the y axis

(ys) are given by solutions of the following 4th-order polynomial

equation for ys

0 ¼ 5y2s
4þ 4Bos þ l

þ 3ð2y2s � 1Þ
2þ 2Bod þ 3l

þ 7

n
y2s ð3y2s � 2Þ: (30)

It should be noted that although four solutions to (30) exist, only

one of them satisfies the criteria that it be both real and less than

one. Although analytical solutions to (30) exist, a more illustra-

tive discussion of these solutions is obtained by examining the

limit of large Boussinesq number. In the limit of Bod / N, only

the first term in (30) survives, therefore ys¼ 0. On the other hand,

in the limit of Bos / N, the second term in (30) survives, giving

the condition ys ¼ �1=
ffiffiffi
2

p
z0:707:
This journal is ª The Royal Society of Chemistry 2011
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Fig. 2 Fluid velocity field within the droplet in the x–y plane. l ¼ 1 for

all plots. In (a), Bod ¼ Bos ¼ 0, (b), Bod ¼ 10, Bos ¼ 0, and in (c), Bod ¼ 0,

and Bos ¼ 10.

D
ow

nl
oa

de
d 

by
 N

at
io

na
l I

ns
tit

ut
es

 o
f 

St
an

da
rd

s 
&

 T
ec

hn
ol

og
y 

on
 1

2 
A

pr
il 

20
11

Pu
bl

is
he

d 
on

 1
2 

A
pr

il 
20

11
 o

n 
ht

tp
://

pu
bs

.r
sc

.o
rg

 | 
do

i:1
0.

10
39

/C
1S

M
05

14
4J

View Online
4.2 Marangoni effects

In this section the effects of interfacial surfactant concentration

gradients are explored. Both analytical results within asymptotic

limits and numerical results are presented.

To begin, (23) is solved in the quasi-steady state, and it is

assumed that surfactant redistribution to its equilibrium value
This journal is ª The Royal Society of Chemistry 2011
dominates convection effects. Within this limit, Ma�1 is the

relevant small parameter in the problem. Both the migration

velocity Umig and gjm therefore admit regular perturbation

expansions,

Umig ¼ U
ð0Þ
mig þMa�1U

ð1Þ
mig þ.;

gjm ¼ g
ð0Þ
jm þMa�1g

ð1Þ
jm þ.:

(31)

The leading-order result is that shear and dilational surface

viscosities do not remobilize the interface in this limit of an

incompressible surfactant; the slip velocity is that of a rigid

sphere, U(0)
mig ¼ �1/3 x̂. See Appendix G for expressions for g(0)jm.

This is the same limit obtained for large Bod in (25), which is

another way an incompressible interface can be obtained within

the context of this problem. Thus, as regards steady-state inter-

facial dilatation, both high elasticity or dilational viscosity ach-

ieve the same limit.

At the next order in perturbation the relevant terms in (23) are

0 ¼ �Ujmj2m2
þLjmj2m2

�
g
ð0Þ
j2m2

þWðjÞgð1Þjm þJjmj1m1 j2m2
g
ð0Þ
j1m1

g
ð0Þ
j2m2

(32)

Solving the above for g(1)1�1 and inserting it into (24) and using (31)

we find that a cross-stream (lateral) migration enters the system

U
ð1Þ
mig ¼ y0

n
ð2lþ3Þ

h
48ðBosÞ2þ36Bosð3þ2lÞþ5ð1þlÞð17þ3lÞ

i
þ 2Bod½97þ 36Bosð2þ 3lÞ þ lð151þ 27lÞ�d̂�1

ŷ;

(33)

where

d̂ ¼ 9ð4þ 4Bos þ lÞð2þ 2Bod þ 3lÞð5þ 6Bod þ 4Bos þ 5lÞ:
(34)

Surfactant gradients induce a cross-stream migration of the drop

in the flow. This effect is not seen in the incompressible limit of

a clean (or viscous interface) spherical drop. This migration

velocity depends linearly on y0, and is directed towards the flow

centerline for all values of l, Bod, and Bos.

When Bod ¼ Bos ¼ 0, U(1)
mig$ŷ decreases monotonically with

increasing l until a rigid-sphere limit is reached. On the other

hand, if Bod > 0, U(1)
mig$ŷ approaches the rigid-sphere limit either

monotonically (Bod > Bod
c) or non-monotonically (Bod > Bod

c).

Here Bod
c is the value of Bo

d below which (33) has an extremum

on the positive l line, and above which it does not. This behavior

is seen in Fig. 3a. If, on the other hand, Bos were varied while

keeping Bod ¼ 0, non-monotonic behavior is seen in U(1)
mig (see

Fig. 3b). In the limit of large Bos,U(1)
mig ¼ 1/3 ŷ for all values of l. It

should be noted that in the limit of large l, the addition of the

surface viscous forces does not modify the conclusions reached in

ref. 6. In the presence of both shear and dilatational forces,

dilatation dominates, and thus the addition of even large values

Bos (e.g. 103) results in only a minor change to the curves in

Fig. 3a.

Results for an arbitrary distribution of surfactant on the

surface can be obtained by solving (23) numerically. In this case,

all modes are coupled and the (23) represents an infinite sum. For

numerical convenience, the series is truncated at the j ¼ 6

harmonic mode. The trajectory of the droplet in the channel

(ys(t)) is found by numerically solving
Soft Matter
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Fig. 3 Marangoni-induced lateral migration velocity as a function of l.

In (a) the solid, dashed and dotted curves are for Bod ¼ 0, 1, 10,

respectively, while Bos ¼ 0. In (b) the solid, dashed and dotted curves are

for Bos ¼ 0, 1, 10, respectively, while Bod ¼ 0.
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dys

dt
¼ Umig½ys;GðysÞ�$ŷ: (35)

Previous works on capsules23,24 found that the motion of an

object in unbounded parabolic flow is directed towards the
Fig. 4 Trajectories of the droplet in Poiseuille flow. In (a) the solid,

dashed, dotted, and dot-dashed curves are for Bod ¼ 0, 1, 10, 100,

respectively, while Bos ¼ 0, Ma ¼ 10, and l ¼ 1. In (b) the solid, dashed,

dotted and dot-dashed curves are for Bos ¼ 0, 1, 10, 100, respectively,

while Bod ¼ 0, Ma ¼ 10, and l ¼ 1.

Soft Matter
centerline of the flow. This observation is consistent with the

results of Fig. 4, where the trajectory, ys, is shown for a spherical

surfactant-covered droplet. Increasing either Bod or Bos will

increase the time needed for the drop to reach the equilibrium

centerline of the flow field. However, dilatational surface

viscosity severely delays cross-stream migration of the droplet,

while the effects of shear surface viscosity effects are not as

strong. Surfactant concentration profiles are qualitatively similar

to those of Fig. 2 in Hanna and Vlahovska,6 and are essentially

combinations of j ¼ 3 and j ¼ 2 harmonic modes.
5. Conclusions

We have shown here that interfacial viscous forces can modify

the dynamics of a spherical droplet in a plane unbounded Pois-

euille flow. A modified slip velocity was found which depends

only on the viscosity of the drop and surface dilatation. Addi-

tionally, several locations on and within the drop were found

where components of the velocity field were either independent

of Bod or Bos, or where a combination eliminated the dependence

of one Boussinesq number. These points are ideal locations for

experimental measurements to obtain information about surface

viscosities.

When Marangoni effects (i.e. concentration gradients in

surfactant) are considered, the limit of incompressibility reveals

a slip coefficient identical to that of a clean droplet with high

surface dilational viscosity. Concentration gradients still break

the symmetry and induce a cross-streammigration. For arbitrary

surfactant concentrations, drop trajectories were numerically

found which highlight the effects of surface viscous forces.

Whether for viscous interfaces or those where surfactant

concentration is explicit, we have considered the effect of an

interfacial agent, i.e., of some agent which forms on the interface

and modifies its properties. The viscous interface was assumed to

have constant properties if other transport mechanisms are

sufficiently active to maintain a uniform concentration of inter-

facial agents. Motivated by the results obtained here, an inves-

tigation into deformable droplets in flow with viscous interfaces

is warranted.
Appendix A – Spherical harmonics

The normalized scalar spherical harmonics are defined as

Yjmðq;fÞ ¼
�
2j þ 1

4p

ðj � n!Þ
ðj þ nÞ!

�1
2ð�1ÞmPm

j ðcos qÞeimf; (36)

where Pm
j (cosq) are the associated Legendre polynomials. From

the scalar harmonics, the vector spherical harmonics relevant to

our study are defined as1

yjm0 ¼ ½jðj þ 1Þ��1=2
rVUYjm;

yjm1 ¼ �îr� yjm 0;
yjm2 ¼ r̂Yjm;

(37)

where VU is the angular part of the gradient operator in spherical

coordinates.
This journal is ª The Royal Society of Chemistry 2011
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Appendix B – Coupling of scalar and vector harmonics

Within this study, the coupling between scalar and vector

spherical harmonics is inevitable. In this section, formulas

developed in ref. 25 and given in ref. 26 for this coupling are

shown for completeness. The product of scalar harmonics is

recoupled as

YjmYj1m1
¼ 2z(j,j1,j2,m,m1,m2,2)Yj2m2

. (38)

Summation over repeated indices is implied. The coupling

formula between scalar and vector harmonics is

yjmqYj1m1
¼ Cqq2(j,j1,j2) � z(j,j1,j2,m,m1,m2,2)yj2m2q2

. (39)

The entries in the coupling matrix Cqq2 are

C00 ¼ C11 ¼ ½jðj þ 1Þj2ðj2 þ 1Þ�1=2cðj; j1; j2Þ;
C01 ¼ C10 ¼ �½jðj þ 1Þj2ðj2 þ 1Þ�1=2qðj; j1; j2Þ;
C22 ¼ 2:

(40)

All other entries are zero. In the above,

c(j,j1,j2) ¼ j(j + 1) + j2(j2 + 1) � j1(j1 + 1) (41)

and

q(j,j1,j2) ¼ [(j + j1 � j2)(1 � j + j1 + j2) � (j � j1 + j2)(1 + j + j1 +

j2)]
1/2 (42)

The coupling between two vector harmonics produces a scalar

harmonic in the following way

yjmqyj1m1q1
¼ Cqq2

(j,j1,j2)(�1)dq2dq12 � z(j,j1,j2,m,m1,m2,2)Yj2m2
. (43)

In (38), (39), and (43), z are the Clebsch–Gordon coefficients

zðj; j1; j2;m;m1;m2; 2Þ ¼
ð�1Þm2

2

�ð2j þ 1Þð2j1 þ 1Þð2j2 þ 1Þ
4p

�1=2

�
�

j � x

0

j1
0

j2
0

��
j

m

j1
m1

j2
�m2

� (44)

where x ¼ 0 is q + q2 is odd, and x ¼ 1 if q + q2 is either even or

zero. Lastly, �
j j1 j2
m m1 m2

�
(45)

is the Wigner 3j symbol.25 Properties of the 3j symbol can be

found in ref. 26. For later convenience, let

Gq1q2
jmj1m1 j2m2

¼ Cqq2ðj; j1; j2Þð�1Þdq2 dq12 � zðj; j1; j2;m;m1;m2; 2Þ (46)

Appendix C – Coefficients of unbounded plane
Poiseuille flow

For completeness, in this section, the coefficients, cjmq, for plane

Poiseuille flow are given. The full flow field is therefore given by

vN ¼ cNjmqu
+
jmq(r). These were taken from ref. 6 and are
This journal is ª The Royal Society of Chemistry 2011
cN3�30 ¼ Ha

ffiffiffiffiffiffiffiffi
4p

105

r
; cN3�32 ¼ Ha

ffiffiffiffiffi
p

35

r

cN3�10 ¼ Ha
2

15

ffiffiffiffi
p

7

r
; cN3�12 ¼ Ha

1

5

ffiffiffiffiffi
p

21

r

cN2�20 ¼ �i _g

ffiffiffiffi
p

5

r
; cN2�22 ¼ �i _g

ffiffiffiffiffiffi
2p

15

r

cN2�11 ¼ a
1

3

ffiffiffiffi
p

5

r
; cN1�01 ¼ i _g

ffiffiffiffiffiffi
2p

3

r

cN1�10 ¼ �
h
a
4

5
þ
	
Ux

migHiU
y
mig


� ffiffiffiffi
p

3

r

cN1�12 ¼ �
h
a
1

5
þ
	
Ux

migHiU
y
mig


� ffiffiffiffiffiffi
2p

3

r

cN100 ¼ �2Uz
mig

ffiffiffiffiffiffi
2p

3

r
; cN102 ¼ �2Uz

mig

ffiffiffiffi
p

3

r

(47)

Appendix D – Fundamental set of velocity fields

Following the definitions given in Blawzdziewicz et al.,1 we list

the expressions for the functions u�jmq(r,q,4). The velocity field

outside the vesicle is described by

u�jm0 ¼
1

2
r�jð2� j þ jr�2Þyjm0þ

1

2
r�j ½jðj þ 1Þ�1=2ð1� r�2Þyjm2;

(48a)

u�jm1 ¼ r�j � 1yjm1 (48b)

u�jm2 ¼
1

2
r�jð2� jÞ

�
j

1þ j

�1=2

ð1� r�2Þyjm0þ
1

2
r�jðj þ ð2� jÞr�2Þyjm2:

(48c)

The velocity field inside the vesicle is described by

uþjm0 ¼
1

2
r j�1ð�ðj þ 1Þ þ ðj þ 3Þr2Þyjm0�

1

2
rj�1½jðj þ 1Þ�1=2ð1� r2Þyjm2 ;

(49a)

u+jm1 ¼ rjyjm1 (49b)

uþjm2 ¼
1

2
r j�1ð3þ jÞ

�
j þ 1

j

�1=2

ð1� r2Þyjm0þ
1

2
r j�1ðj þ 3� ðj þ 1Þr2Þyjm2 :

(49c)

On a sphere with r ¼ 1 these velocity fields reduce to the vector

spherical harmonics defined by (37)

u�jmq ¼ yjmq. (50)

Hence, u�jm0 is tangential, and u�jm2 is normal to a sphere. In

addition, u�jm0 defines an irrotational velocity field.
Appendix E – Hydrodynamic tractions

The hydrodynamic tractions associated with the velocity fields

(13) can be represented in vector spherical harmonics, Thd$n̂ ¼
sjmqyjmq,

27 where
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soutjmq ¼ cNjmq0

	
Qþ

q0q �Q�
q0q



þ cjmq0Q

�
q0q

sinjmq ¼ lcjmq0Q
þ
q0q

(51)

where summation over q0 is implied. The symmetric matrices

Q�
q0q are

Q�
q0q ¼

2j þ 1 0 �3

ffiffiffiffiffiffiffiffiffiffi
j þ 1

j

r
0 j � 1 0

�3

ffiffiffiffiffiffiffiffiffiffi
j þ 1

j

r
0 2j þ 1þ 3

j

0
BBBB@

1
CCCCA; (52)

Q�
q0q ¼

2j � 1 0 �3

ffiffiffiffiffiffiffiffiffiffi
j

j þ 1

r
0 �j � 1 0

�3

ffiffiffiffiffiffiffiffiffiffi
j þ 1

j

r
�2j � 1 � 3

j þ 1

0
BBBB@

1
CCCCA (53)

The reader should note that the indexing of the matrices begins

with 0.

Appendix F – Surfactant-induced velocity field and
evolution equations

The Marangoni terms present in (10) give rise to the following

coefficients found in ref. 6:

csjm 0 ¼ � d1j

2lþ 2

ffiffiffi
2

p

3
Magjm �

�
1� d1j

�
1þ l

Magjm

csjm1 ¼ 0

csjm2 ¼
d1j

3lþ 2

2

3
Magjm

(54)

where as before, dij is the Kronecker delta.

The terms present in (23) are of two forms: clean drop and

surfactant terms. The clean drop terms are

Cjm ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðj þ 1Þp

c0jm0 � 2csjm2

Ujmj2m2
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jðj þ 1Þp G01
jmj1m1 j2m2

c0j1m11

L ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðj þ 1Þp G00

jmj1m1 j2m2
c0j1m10

� 2G22
jmj1m1 j2m2 j�mc

0
j1m12

(55)

The U term gives distortions in the surfactant-concentration-

driven linear shear components of the flow, while C and L

describe other effects. Making the definition csjmq ¼ �Wq(j)Magjm,

the surfactant terms become

W ðjÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðj þ 1Þp

W 0ðjÞ � 2W 2ðjÞ

Jjmj1m1 j2m2
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jðj þ 1Þp
W 0ðj1ÞG00

j1m1 j2m2 j�m � 2W 2ðj1ÞG22
j1m1 j2m2 j�m

(56)

Appendix G – Expressions for gjm

In the limit of a nearly incompressible surfactant (Ma�1 � 1), the

leading-order evolution equation for gjm (23) admits the

following solution for j ¼ 1
Soft Matter
g
ð0Þ
1m ¼ 2þ 3l

2þ 2Bod þ 3l

h ffiffiffi
2

p
ð2Bod � 3þ 3lÞcNjm2

þð9þ 4Bod þ 6lÞcNjm0

i
(57)

and for j > 1,

g
ð0Þ
jm ¼ 2j þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jðj þ 1Þp ð1þ l� 2Bos þ jdÞ�h
3cNjm2 � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðj þ 1Þp

cNjm0

i (58)

The migration induced by the conception of surfactant can be

obtained by inserting (57) into (24).
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