Diffusion Coefficients in Liquid Phase Predicted by *ab initio* Molecular Dynamics

> Zi-Kui Liu, Bill Y. Wang, Hui Zhang The Pennsylvania State University Xidong Hui and Huazhi Fang University of Science and Technology, Beijing

 $D = \lim_{t \to \infty} \frac{\left\langle R^2(t) \right\rangle}{6t}$

PENNSTATE

Acknowledgments National Science Foundation Army Research Lab

Benefits of NIST Workshops

- 2002 workshop on thermodynamics
 - Started our activity on CALPHAD automation in the NSF ITR project
 - Shang, Wang and Liu, "ESPEI: Extensible, Self-optimizing Phase Equilibrium Infrastructure for Magnesium Alloys,", *Magnesium Technology 2010, 617*
- Diffusion workshop since 2003
 - Resulted in first-principles calculations of diffusion coefficients in crystals
 - Diffusion in liquid: this presentation
- Diffusion workshop at 2011 TMS annual meeting

Objective: predict diffusion coefficients in liquid

- Evaluate the *ab initio* molecular dynamics in calculating diffusion coefficients in liquid
 - Self diffusion coefficients of pure elements
 - Tracer diffusion coefficients of binary systems
- Ultimate goal
 - Diffusion coefficients in grain boundary: pure elements and binary systems

Previous work on diffusion coefficients

- Activities based on discussions at the NIST workshops
- Diffusion in crystals by first-principles
 - Self and tracer diffusion coefficients in fcc
 - Self and tracer diffusion coefficients in bcc/hcp
- Publications: Manjeera Mantina, presented and discussed at NIST workshops
 - fcc-Al: Phys. Rev. Lett., Vol.100 (2008) 215901
 - Impurity in fcc-Al: Acta Mater., Vol.57 (2009) 4102-4108.
 - 3d in fcc-Al: Phys. Rev. B, Vol.80 (2009) 184111
 - bcc and hcp: Defect Diffusion Forum, Vol. 294 (2009) pp 1-13

Prior work on *ab initio* **Molecular Dynamics (AIMD)**

- Atomic structures of liquid as a function of temperature and compositions
 - Comput. Mater. Sci., Vol.43 (2008) 1123-1129.
 - Appl. Phys. Lett., Vol.94 (2009) 091904.
 - Acta Mater., Vol.57 (2009) 376-391.
- Inspired by discussions at NIST workshop to extend the activities to evaluate diffusion coefficients.

AIMD

- Molecular dynamics with atomic forces calculated on the fly using first-principles based on density functional theory
- Advantage: no need of fitted atomic potentials
- Disadvantage: limited number of atoms and time steps

Diffusion coefficient and meansquare displacement (MSD)

$$D = \lim_{t \to \infty} \frac{\left\langle R^2(t) \right\rangle}{6t} = \lim_{t \to \infty} \frac{1}{6tN_i} \sum_{j=1}^{N_i} \left[R_j(t+t_0) - R_j(t_0) \right]^2$$

$\langle \mathbf{R}_i^2(t) \rangle$: MSD of atom i

- **N_i: Total number of i atoms**
- **R**_i: Coordinates of j atom
- t₀: Origin of time

AIMD

- Software : VASP Version 4.6
- Supercell Size: 150/200 atoms
- Potential: GGA-PAW
- Time step: 3~5 fs
- Gamma point only k mesh and low accuracy
- Liquid configuration after running 10 ps above liquidus temperature (i.e. Al-Zr at 1.4Tm)

Simulation steps

- Establish the equilibrium liquid
- 2000 converged configurations with simulation time no less than 10ps
- Using the last 1600 configurations for MSD
- Slop of the MSD curve → 6 times of the self diffusion coefficient for six directions in the space.
- MSDs after 0.5ps and larger than 2 Å² used for diffusion analysis

Simulation steps and MSD

×

Systems of interest

- Studied
 - Pure elements: Al, Ni, Zr
 - Binary systems: Al-Ni, Al-Zr
- Under investigation
 - W, Ni-W
 - -Mg, Mg-X

Pure Al: pair correlation function

Waseda, The structure of non-crystalline materials. New York: McGraw-Hill, 1980

Pure Ni: pair correlation function and structure factor

Pure Zr: pair correlation function and structure factor

PENN<u>STATE</u> Fang, *Comput. Mater. Sci., Vol.43, 2008, 1123*

Ni: MSD at different temperatures and volumes

PENNSTATE

Viscosity of pure Al

PENNSTATE

Al-20Ni: structure factor

Al-20Ni: MSD

Al-20Ni: tracer diffusivity

Al-20Ni: compared to pure

Al-Zr: MSD

Al-Zr: diffusion coefficients

Summary

• Self-diffusion coefficients of pure elements and some binary alloys in the liquid state are predicted from the AIMD, showing good agreement with the experimental data.

