Public T Reilly, A Beard Div. PA - BU Specialties BS Flame Retardants 30-Sep-2009

# Additives used in Flame Retardant Polymer Formulations: Current Practice & Trends

"Fire Retardants and their Potential Impact on Fire Fighter Health" Workshop at NIST, Gaithersburg, MD USA, 30-Sep-2009



#### Outline



- Global consumption of polymers and key application areas
- Formulation of additives into Polymers
- Compounding of polymers
- Flammability and fire risk of polymers
- Global FR market consumption and trends

#### World Synthetic Polymers Production: 2007





#### World Plastics Production 1950 - 2007





#### Plastics are a global success story

- Continuous growth for more than 50 years
- Compound Annual Growth Rate (CAGR) is about 9,0%

Source: PlasticsEurope Market Research Group (PEMRG)

#### Western Europe Plastic Materials Demand by Segments 2007



Source: PlasticsEurope Market Research Group (PEMRG)

-

Clariant

*The Plastics Pyramid – commodity polymers are the most flammable* 





data PlasticsEurope 2008

Why are Additives added to Polymers?



Exactly your chemistry.

Three Functional Classes for Additives:

1) Additives which are essential to fabrication of parts

2) Those which improve properties

3) Those which correct problems caused by the other additives !

Source: Polymer Modifiers & Additves, Lutz, Grossman 1988

### Additives for Property Enhancement



Exactly your chemistry.



T Reilly, A Beard, Div. PA - BU Specialties, BS Flame Retardants (Copyright Clariant. All rights reserved.)

# Example of Additives used in Plastics



- Mineral Reinforcement/Fillers: improve stiffness, surface hardness, cost reduction
- **Dyes and Pigments**: color & appearance
- Antioxidants & stabilizers: delay/prevent oxidation during processing/application
- **UV Stabilizers**: interfere with light-induced degradation, weathering
- Blowing Agents: production of foams, weight reduction
- Lubricants: improvement in processing, release properties
- Coupling Agents: impart compatibility between polymer & additives
- Antistats/Conductives: prevent electrostatic discharge, improve conductivity
- Antimicrobials: prevent microbiological attack and property degradation
- Impact Modifiers: enhance toughness of material to impact
- Optical Brighteners: enhance appearance, off-set yellow color
- Flame Retardants: prevent ignition & flame spread, prolong escape time

#### *Limiting Oxygen Index (LOI) ASTM 2863*



|  | <u>Resin</u> | LOI (approx.) |
|--|--------------|---------------|
|  | POM          | 15.5          |
|  | PE           | 17.3          |
|  | PMMA         | 17.5          |
|  | PP           | 17.6          |
|  | PS           | 18.0          |
|  | ABS          | 18.5          |
|  | PBT          | 21.5          |
|  | PET          | 22.0          |
|  | PC           | 24.0          |
|  | <b>PA</b> 6  | 24.5          |
|  | F-PVC        | 24.5          |
|  | PA 66        | 25.0          |
|  | <b>R-PVC</b> | 42.5          |
|  | PTFE         | 95.0          |



A High LOI value indicates a Lower Flammability !

# Compounding of Additives into Polymers



Flame Retardant Polymer Formulations

T Reilly, A Beard, Div. PA - BU Specialties, BS Flame Retardants (Copyright Clariant. All rights reserved.)

Clariant

#### Flame Retardant Polymer Formulations T Reilly, A Beard, Div. PA - BU Specialties, BS Flame Retardants (Copyright Clariant. All rights reserved.)

#### Slide 12

# Flame Retardant Selection Criteria some considerations:

- Efficiency/Cost
- Ease of Compounding
- Adequate Thermal Stability
- Corrosivity Issues
- Physical Properties
- Appearance
- Compatibility (Migration?)
- Environment/Toxicity
- UV Stability/Weathering
- Electrical Properties
- Combustion Products (corrosives, toxics, smoke)











## Many different chemistries can achieve Flame Retarding effects





 different physical / chemical properties, environmental fate, toxicology, and regulatory status

## Global Consumption of Flame Retardants (2007)





Source: SRI Consulting (2008)

30-Sep-2009

#### Global Flame Retardant Market



Exactly your chemistry.





Source: BCC Research

# <u>Recent BCC Research Study</u>: the global market for flame retardant chemicals will grow to \$6.1 B in 2014 (Compound annual growth rate of 7%).

# Flame Retardants Consumption by Region global consumption 1,8 mm mt (2007)



Exactly your chemistry.



Flame Retardant Polymer Formulations

T Reilly, A Beard, Div. PA - BU Specialties, BS Flame Retardants (Copyright Clariant. All rights reserved.)



source: European FR Association/BSEF



#### ■ E&E ■ Building/Construction ■ TAC ■ Transportation

TAC : textile, adhesives, coatings

Source: SRI Consultants, Freedonia and company reports

## Concerns about Flame Retardants



- findings of certain brominated flame retardants in the environment, biota, humans
- some concern about certain phosphate esters in indoor air
- source of endocrine disruption ?
- FR Persistence, Bioaccumulation, Toxicity (PBT) ?
- risk assessments, scientific studies for materials of concern





Created for ES&T by Andreas Sjödin of the U.S. Centers for Disease Control, shows the levels of the most bioaccumulative PBDE congener, BDE-47, and the most bioaccumulative PCB congener, CB-153, in U.S. human blood samples. ES&T, 37, p. 384, 2003





Exactly your chemistry.

# THE GREENEST BIG COMPANIES IN AMERICA AN EXCLUSIVE RANKING

SEPTEMBER 28, 2009

Meek

New.

PLUS COPENHAGEN OR BUST by GORDON BROWN

009

### Legal compliance and ecological trends are key drivers for increased usage of HF FRs



Exactly your chemistry.



Flame Retardant Polymer Formulations

T Reilly, A Beard, Div. PA - BU Specialties, BS Flame Retardants (Copyright Clariant. All rights reserved.)







#### Phosphorus, Inorganic & Nitrogen Flame Retardants Association



Small Scale External Ignition Source in contact with Household Appliances (non-FR)





Needle Flame Source (30 w)





6 minutes



2 Minutes



7 Minutes

Flame Retardant Polymer Formulations T Reilly, A Beard, Div. PA - BU Specialties, BS Flame Retardants (Copyright Clariant. All rights reserved.) Small Scale External Ignition Source in contact with Household Appliances (non-FR)



Exactly your chemistry.



1 minute





5 minutes







Flame Retardant Polymer Formulations T Reilly, A Beard, Div. PA - BU Specialties, BS Flame Retardants (Copyright Clariant. All rights reserved.)

#### Station Nightclub Fire West Warwick, Rhode Island, February 2003



Exactly your chemistry.



CN.com.



Victims jam the main exit of The Station



#### Conclusion



- Plastics are widely used in our society. The global consumption of plastic materials is increasing. New materials and applications are being developed.
- It is necessary to add FRs to some plastics (dependent on application).
- Flame retardant consumption is growing globally due to increased standard of living and fire safety requirements..
- There is a trend towards more environmentally compatible FRs, driven by NGOs, OEMs and legislation like RoHS, REACH, & some U.S. state legislation.
- FR additives are beneficial to prevent ignition, flame spread & prolong escape time.

### More Information - Links



#### Flame Retardants

- <u>www.flameretardants.eu</u> European Flame Retardants Association (EFRA)
- <u>www.flameretardants-online.com</u>
- <u>www.exolit.com</u>
- www.halogenfree-flameretardants.com
- <u>www.flameretardants-online.com/news/frame\_news\_downloads.htm</u>
- REACH:
  - <u>http://ec.europa.eu/environment/chemicals/reach/reach\_intro.htm</u>
  - <u>http://www.reachcentrum.eu/</u>
  - <u>http://ecb.jrc.it/REACH/</u>
  - <u>http://ec.europa.eu/echa/home\_en.html</u>
- WEEE and RoHS Europe:
  - http://ec.europa.eu/environment/waste/weee/index\_en.htm
- Ecolabel EU
  - http://ec.europa.eu/environment/ecolabel/news/index\_en.htm



Thank you for your attendance !



 Dr. Adrian Beard Clariant Produkte (D) GmbH <u>adrian.beard@clariant.com</u> +49 2233 48 6114



Timothy Reilly
Clariant Corporation, USA
<u>timothy.reilly@clariant.com</u>
401-823-2444



