Accuracy in Powder Diffraction IV

High Performance Hybrid Pixel Detector and its Applications

4/22/2013

Yasukazu Nakaye, Ph.D. Rigaku Co.

Copyright © 2013 — Rigaku Corporation and its Global Subsidiaries. All Rights Reserved.

What is important for "Accuracy"?

What is the "Ideal" X-ray Detector

Never misses photons!

Why we need 2D?

Counting and Integrating

Photon Counting

Discriminate X-ray pulse from noise by height.

Detector Materials

Photon Integrating	Photon Counting
PhosphorCCDCMOS	 Semiconductor HPAD (Hybrid Pixel Array Detector)
IP (Image Plate)	 Gas MWPC (Multi-Wire Proportional Counter) MPGD (Micro-Pattern Gas Detector)
X-ray Film	

Charge Coupled Device (CCD)

Complimentary Metal-Oxide Semiconductor (CMOS)

Micro-Pattern Gas Detector (MPGD)

Hybrid Pixel Array Detector (HPAD) : Closest one to the Ideal Detector

Compare HPAD to CCD, CMOS and MPGD

	Photon Integrating		Photon Counting	
	CCD	CMOS	MPGD	HPAD
Sensitivity at Cu K (electron/photon)	50	150	200	2000
Read noise (electron, rms)	~ 20	~ 200	0	0
Dynamic range	10 ⁴	10 ⁴	10 ⁸	10 ⁶
Dark Current (photons/sec/µm ²)	~ 10 ⁻⁷	~ 10 ⁻⁵	0	0
Readout time	~ 1000 ms	~ 500 ms	~ 200 ms	~ 5 ms
				/

Comparison of photon integrating and counting

	PhotonPhotonIntegratingcounting		
Detector Material	Phosphor (CCD, CMOS), IP, Film	IP, Film Semiconductor, Gas	
Energy resolution	NO	YES	
Dark Current	YES	NO	
Read noise	YES	NO	
Dead time	NO	YES	
Application Fields	Lab, SR, XFEL	Lab, SR	

Detective quantum efficiency HPAD (Si 300 um) 99 % @ 8.04 keV MWPC, MPGD (3 atm, 1 mm) 80 % @ 8.04 keV

Spatial resolution HPAD = 1 MPGD ~ 2

= 1 pixel (~ 100 μ m) ~ 250 μ m FWHM Gaussian

Count rate HPAD MPGD

local 100 kcps / pixel local 100 kcps / pixel global 2 Mcps

HPAD Chip Specifications

Detector	Medipix 2	PXD-18k*	XPAD3	PILATUS II
Pixel Size	55 x 55 μm	100 x 100 μm	130 x 130 μm	172 x 172 μm
Countrate	7 x 10 ⁷ cps/mm ²	2 x 10 ⁸ cps/mm ²	4 x 10 ⁷ cps/mm ²	3 x 10 ⁷ cps/mm ²
Energy resolution	23 %	20 %	12 %	6 %
Read time	256 µs	7 ns / 3.7 ms	1 ms	2.3 ms

*P. Maj et al., Nulc. Intrum. Meth. A 697, 32-39 (2013)

Zero dead time Measurement

Read time: 7 ns (571 fps)

Exposure time 1.75 ms / frame

Read time: 3.7 ms (183 fps)

Specification and Performance

Time Delay Integration (TDI)

Time Delay Integration (TDI)

Sample : LaB₆ Scan Speed: 10° / min Cu Target : 40 kV, 30 mA

Summary

2D detector

• More information and shorter measurement time

Photon counting

• Very high signal to background ratio

Hybrid pixel array detector

- High quantum efficiency and spatial resolution
- Fast readout (Zero dead time mode)
 - In-situ measurement

HPAD promises us a higher quality of data.

Thank You

Copyright notice

Copyright © 2013 – Rigaku Corporation and its Global Subsidiaries. All Rights Reserved.

The textual, photographic, video, audio, and combined audiovisual materials and documents resulting from the promotional or educational activities of Rigaku Corporation and its Global Subsidiaries, including the material contained on the various Corporate Web sites, are protected under U.S., Japanese and international laws as copyrighted works. Anyone who displays, reproduces, copies, creates derivative works, or sells our textual, photographic, multimedia, PowerPoint, video or audiovisual programs for commercial or non-commercial purposes without our permission violates the copyright laws and is liable for copyright infringement.

Likewise, Rigaku Corporation (and its Global Subsidiaries) trademarks and service marks are protected by state, federal, and international trademark laws. Any person who uses our marks for commercial or non-commercial purposes without our permission on goods or services in such a way that it dilutes the distinctive quality of our marks or that creates the likelihood of confusion with our marks is liable for trademark infringement.

Liability for copyright or trademark infringement involves the potential for significant civil damages, including, in particular cases, statutory damages, liability for up to three times actual damages, and attorney's fees.

If you have any questions regarding this notice, please send an e-mail to info@rigaku.com.

