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Introduction to the Project
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Fire Debris Analysis
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Collection Sampling Analysis

Interpretation
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The quality of the analytical result (chromatographic fingerprint) can 

impact the interpretation of the data.



How We Got Here
• Prior to this project our group had no real experience with fire debris 

analysis

• Joined OSAC FD&E in 2015 / 2017 for explosives expertise

• The roadmap development suggested a need for stronger instrument 

performance & validation guidance

FD&E Roadmap
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Benefits of Optimization

1. How do I know my method is fit for purpose?

• Labs have developed acceptance criteria

• Method development varies amongst labs and is typically qualitative

2. How does this GC-MS compare to another?

• Scientists inherently know that some instruments are more sensitive

• Process for handling multiple instrument purchases

3. If a method is updated, do I need to re-validate?

• Unclear whether changing setting “xx” will significant alter my results

4. Is my system still operating optimally?  

• Qualitative verification test mixtures make small changes in performance 

difficult to detect
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Quantitative method optimization helps address common questions.



Challenges in Optimization

• GC-MS is a multi-component instrument 

• There are many factors to optimize

• The interplay between factors means that they cannot be analyzed 

individually

• This process can be time consuming, resource heavy, and expensive

• Laboratories have time and resource constraints that minimize how in-depth 

they can go

• There is no definition of what “optimized” means

• Need to attach data & meaning

Method optimization is a difficult measurement challenge.

6



The Project

• Define “optimized” in quantitative terms

• Develop a framework to allow labs to optimize a GC-MS method

• Investigate all parameters simultaneously instead of individually

• Minimize impact of lab operations

• Do not prescribe a method but measure performance of developed 

methods

• Feeding into a statistical process control

• Create a performance driven platform without prescribing methods

• Include the community’s input throughout the entire process

• Adoption of the framework is key

• OSAC helps to facilitate this
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• A lot of foundational work is required to get to this point

• The work we are presenting today if an effort to complete this foundational work

New instrument 

delivered & 

installed

Order test mix
Go to web platform & get a list of 

optimization runs

Repeat analysis of test mix 

over time to provide 

diagnostics & QA/QC

Upload datafiles to 

get optimal method

Complete analyses 

of test mix
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Translation to Statistical 

Problem
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Best Settings
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Response Surface Methodology

• Optimize the response

• Sequential 

experimentation

– Step 1: identify important 

factors

– Step 2: approximate 

surface

– Step 3: locate global 

extreme
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Screening Experiment

• Factor screening to identify 

most important factors

• Orthogonal first-order 

experimental designs

• Two-level designs

– 2k factorial

– 2k-p fractional factorial
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Pilot Study –

Experimental Settings

13



Identifying Factors

• The first step for this project was identifying the relevant factors and 

determining the appropriate settings (low vs. high)

• Developed list of potential factors in-house

• During in-person OSAC meetings, discussed which factors should or 

should not be studied

– Wanted to ensure we investigated factors that were commonly considered 

and not commonly considered

• Cast a wide net in this phase that can hopefully be reduced in the 

second phase

– Not be afraid to go outside of instrument manufacturers recommended 

settings

• May not be most appropriate for fire debris analysis
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Initial Factor List
• Settled on a list of 19 factors

– Split between injector, GC, and MS

– Some factors are easier to change than others

Injector GC MS

Factor Low High Factor Low High Factor Low High

Injector Type SSL PTV Column Length 15 m 30 m Scan Rate 1 scan/s 4 scan/s

Injector Temp 200 °C 300 °C Column Type DB-1 DB-5 Source Temp 200 °C 275 °C

Split Ratio 1:1 25:1 Flow Rate 0.5 mL/min 3.0 mL/min

Volume 0.5 µL 2.0 µL Initial Temp 35 °C 50 °C

Liner Material Deact. “SKY” Initial Hold 1.5 min 3.0 min

Liner Shape Open Tapered Ramp Rate 10 °C/min 30 °C/min

Liner Wool Yes No Final Temp 275 °C 300 °C

Septa Type Green Red Transfer Temp 200 °C 300 °C

Syringe Type Fixed Remov.
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Pilot Study –

Experimental Design
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Two Level Screening Experiment 

• Identify factors with largest impact on forensic fire debris 

measurement and analysis

• Conclusions limited to NIST Thermo system

• Two-level designs are extremely efficient and effective at 

identifying factors that have the largest impact 

• Two-level full factorial design

– 219 = 524,288 experimental conditions

– Three replicates = 1,572,864 observations
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Two-level Fractional Factorial Designs

Coverage Balance Confounding Orthogonal
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Pilot Study Design

• Two-level orthogonal fractional factorial design

• Split-plot design

– 8 hard-to-change factors

– 11 easy-to-change factors

– Split plot confounding (vs. Cartesian product)

• Fraction factorial split-plot design

– 64 experimental conditions; 192 observations

– Resolution IV design

• Logistics

– 16 days

– Morning, afternoon, and evening blocks 
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Observations: Chromatographs

20



Response Variables

• Model each peak with Gaussian kernel

Signal-to-noise Resolution

Repeatability
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Pilot Study –

Execution
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Creating a Test Mixture
• In order to complete study we needed to develop a test mixture

• FD&E subcommittee suggested E1618 test mixture was a good 

starting point but was not extensive enough

• Polled FD&E, and others on the components of the test mixture
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Creating a Test Mixture

• Used results of survey to determine components of text mixture

• Decided to create in-house

– Unable to ampoule carbon disulfide and dichloromethane

• Storing in capped vials was insufficient

– Decided we needed to make mixture in isopropanol

n-Hexane 1,2,4-Trimethylbenzene 2-Ethylnapthalene

Toluene Indane 1-Ethylnaphthalene

o-Xylene 1,2,4,5-Tetramethylbenzene n-Hexadecane

2,2,4-Trimethylhexane n-Dodecane n-Octadecane

n-Nonane n-Dodecene Phytane

m-Ethyltoluene Naphthalene n-Eicosane

o-Ethyltoluene 2-Methylnaphthalene
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The Pilot Study

• Underestimated the amount of work involved in the study

• 192 runs took over 6 months to complete

• Required us to understand the nuances of software

• All data analysis completed manually

• Due to changing settings, automated data analysis on software platform 

was not practical

• Disruptive to other ongoing 

work
• Instrument was constantly in 

a different state

• Process of maximizing 

randomization is taxing on 

instrument
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Lessons Learned

1) We don’t have the infrastructure to create the test mixture

• SRM Division was willing to help but needed a long lead time

2) We need a way to automate data analysis component

3) We need to really consider the balance between randomization, 

instrument health, and total time of study

4) We thought we knew what “optimal” meant, but it is more nuanced 

than originally thought

• We need to bring in the experts
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Pilot Study –

Analysis
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Settings Matter
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Number of Peaks

29



Number of Peaks
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Number of Peaks
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Number of Peaks
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Peak Models
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The 2nd Study –

Experimental Design and 

Execution
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The Second Time Around
The insight gained from the pilot study allowed to better understand the 

questions we should be asking and the people we should be asking.

1) Went back to OSAC subcommittee with pilot results for more 

discussions

2) Brought others from NIST with expertise in different areas into the 

project

• GC experts, MS experts, data analytics experts, LC-MS experts

3) Brought practitioners and NIST scientists together to better 

understand what it means to have an “optimized method”

4) Brought it vendors to aid in the creation of the test mixture
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Key Takeaways

Discussions with all who participated led to number of a key takeaways:

• Need to redefine the factors and the test mixture

– Need to be cognizant of the levels we are choosing

• Need to understand differences between instrument manufacturers

– Are the factors that most affect response universal?

• Need to better define what the “optimized” response is

• Need to consider the mass spectral data, not just the chromatographic 

data

• Laboratories were willing to aid in running a round-robin version of the 

study, but with minimal disruption to casework

• There are ways to automate data extraction and analysis

– Leverage AMDIS
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Results of Community Discussions
Discussions with the community at the OSAC in-person meeting led to 

increased discussions on the chosen factors.

• Removed Injector Type 

– Not a feasible factor to change for most labs

• Increased Split Ratios

• Updated septa choice to include Merlin Microseal

– This forced a fixed needle choice

• Added column film thickness

• Fixed final column temperature, transfer line temperature, mass scan 

ranges, purge, and wash parameters
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Revised Factor List
• Reduced to 18 factors

– Maintained that some factors are easier to change than others

– Had to consider ways to minimize operational downtime

Injector GC MS

Factor Low High Factor Low High Factor Low High

Injector Temp 200 °C 300 °C Column Length 15 m 30 m Scan Rate 1 scan/s 4 scan/s

Split Ratio 10:1 50:1 Column Type DB-1 DB-5 Source Temp 200 °C 276 °C

Volume 0.5 µL 2.0 µL Column Thickness 0.25 µm 1.0 µm Tune Type Auto Standard

Liner Material Deact. “SKY” Flow Rate 0.5 mL/min 3.0 mL/min
Signal 

Threshold
0 cts 200 cts

Liner Shape Open Tapered Initial Temp 35 °C 50 °C

Liner Wool Yes No Initial Hold 1.5 min 3.0 min

Septa Type Green Merlin Ramp Rate 10 °C/min 30 °C/min
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Results of Community Discussions
Discussions with the community at the OSAC in-person meeting also led 

to changes in the test mixture.

• Initial mixture did not consider high volatility polar compounds (i.e. 

ethanol and acetone)

– Necessary for screening method to detect

• Use of isopropanol as the matrix was not practical

– Ideally it would be a component in the mixture

– Preferred dichloromethane as matrix

• Decided it would be best to have others create the test mixture

• Decided keeping the original compounds in the test mixture was 

crucial

• Mixture needed to be ampouled to keep stability
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Revised Test Mixture

• Test mixture created and ampouled by Restek and shipped directly to 

participating laboratories

• Create the E1618 mix most laboratories use

• Concentrations ranged from 10 µg/mL to 60 µg/mL for individual components

Ethanol m-Ethyltoluene 2-Methylnaphthalene

2-Propanol o-Ethyltoluene 2-Ethylnapthalene

Acetone 1,2,4-Trimethylbenzene 1-Ethylnaphthalene

n-Hexane Indane n-Hexadecane

Toluene 1,2,4,5-Tetramethylbenzene n-Octadecane

o-Xylene Naphthalene Phytane

2,2,4-Trimethylhexane n-Dodecane n-Eicosane

n-Nonane n-Dodecene
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Current Plan
We are currently running the 2nd study.

• Two forensic laboratories agreed to 
participate in the study

• Found an Agilent system in house to run 
the study on

– Analysis being completed on both an 
Agilent and a Thermo

• All laboratories running the identical run 
matrix

– Worked to minimize the time for the analysis 
by grouping hard-to-change factors even 
further

• Test mixture was shipped directly to 
participating laboratories

• Consumables kit provided to participating 
laboratories:

– Columns, liners, nuts, septa, microseals, 
gold seals, needles, etc. 

G 49 12

G 50 29

G 51 3

G 52 22

G 53 3

G 54 22

G 55 12

G 56 29

H 57 30

H 58 4

H 59 21

H 60 11

H 61 4

H 62 30

H 63 21

H 64 11

H 65 21

H 66 11

H 67 30

H 68 4

I 69 12

I 70 3

I 71 22

I 72 29

J 73 18

J 74 7

J 75 16

J 76 25

J 77 7

J 78 18

J 79 25

J 80 16

K 81 8

K 82 17

K 83 15

K 84 26

K 85 26

K 86 17

K 87 8

K 88 15

K 89 17

K 90 8

K 91 26

K 92 15

L 93 25

L 94 7

L 95 18

L 96 16

Merlin NoTaperedDeactivated0.25 µmRXI-130 m

Change Liner, Septa, & Syringe

Change Liner, Septa, & Syringe

Vent Instrument, Cut 30 m Column in Half

Vent Instrument & Change Column

15 m Green 

Merlin 

RXI-1 1.00 µm Tapered No Green 

Tapered Yes Green 

Change Liner, Septa, & Syringe

SKY

Deactivated

SKY

Tapered No

Tapered Yes

1.00 µmRXI-1

15 m RXI-1 1.00 µm

15 m

Change Liner, Septa, & Syringe

Change Liner, Septa, & Syringe

Change Liner, Septa, & Syringe

30 m RXI-1 0.25 µm Deactivated Tapered No Merlin 

30 m RXI-1 0.25 µm SKY

Determine NEW solvent window for methods 3, 4, 11, 12, 21, 22, 29, 30

Determine solvent window for methods 7, 8, 15, 16, 17, 18, 25, 26
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The 2nd Study –

Analysis

42



Decision Analytics

• Multi-attribute 

selection decision

• Incorporate 

forensic analysts’ 

preferences

• Generalizable 

approach

Alternative Attribute Value  Decision Value Selection 

1a  

11      

 

1  

sa  

12  

…
 

1k  

2a  

21   

2  

22  

…
 

2k  
…

 
 

 
 

ma  

1m   

m  

2m  

…
 

mk  

 

Decision model:    1 1 1
, , , 1

k k

i i ik j j ij jj j
f v     

 
   

43



Objective Hierarchy
Select the best GC/MS Instrument settings for fire debris analysis

Maximize ability to determine the presence of ignitable liquid residue

Cost Chromatograph quality

# of good peaks

Distinguish peaks

from noise

Max peak 

height

Min noise

Distinguish peaks

from each other

Min peak 

width

Max temporal 

separation

Reproducible

Noise

High freq

Low freq

Peak pattern

Height
Width

Location Relative 

heights

Mass spec quality

Max library 

match score

Reproducible
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Novel Data Treatment – Shape 

Analysis
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Distance Metrics
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The L2 Metric

• L2 is a fine mathematical metric

• L2 says the two objects differ, but it does not capture the 

differences our mind sees

• We see shape differences
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Two Muscle Cell Populations
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For Chromatographs

1. We see differences in time locations of matched peaks 

across measurements

2. Height differences among matched peaks across 

measurements

3. Relative heights of selected peaks
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Shape as a Metric

What if we could:

1. Mathematically quantify the shape of an object!

2. Formally, define a distance metric between two shapes
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Shape as a Metric

• We could then define a space of shapes

• We could define a path in this space between two shapes

• We could define the shortest path between two shapes 

and call it shape distance
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Path of shapes between two curves
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What Happened in Plots

• The speed as one goes around one curve is changed in 
order to better align its points with points on the other 
curve

A speed change means replacing  f(t) by f(ϒ(t))

• In addition, it is rotated to get a better alignment

Rotation means replacing f(t) by O(f(t))  

O a rotation matrix
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Diffeomorphism (Time Warping)
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The Shape Metric

Given  two curves f and g with shapes 𝑞𝑓 ,𝑞𝑔

𝑑𝑠(𝑞𝑓,𝑞𝑔) = min
γ,𝑜

0
1
𝑞𝑓 𝑡 − ሶγ O( (𝑞𝑔γ(𝑡)))

2
𝑑𝑡

The integrand presents the distance between the shape of 
curve  f and the shape of an aligned g  curve, O( (𝑞𝑔γ(𝑡)))

𝑞𝑓 𝑡 = 
ሶ𝑓(𝑡)

ሶ||𝑓(𝑡)||

(Shape Transform)

𝑑𝑠(𝑞𝑓,𝑞𝑔) is usually computed numerically
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Shape Metric in 1D

In 1D the shape transform reduces

𝑞𝑓(t)  =sign( ሶ𝑓(t)) ሶ𝑓(𝑡)

Since there are no rotations

𝑑𝑠(𝑞𝑓, 𝑞𝑔) = min
γ

0
1
(𝑞𝑓 𝑡 − ሶ𝛾𝑞𝑔(𝛾(𝑡)))

2𝑑𝑡
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Proposed Metrics
• We define two distances to compare chromatograms

• Vertical or Amplitude Distance:

where:

• This is the L2 norm between the aligned . In a sense it measures the height 
differences between matched peaks.

• It can take any value between 0 and infinity.

• Horizontal or Phase Distance: 

• This measures the amount of warping needed to align the two 
chromatograms. In other words, it measures the time differences between 
the matched peaks. 

• It takes value between 0 and pi/2. 
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Aligned Chromatographs
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Pairwise Distance Matrices
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Clustering Chromatograms
• Using Shape Distance, da: with 1000 sample points along each 

chromatogram
• Using only first 51 chromatograms
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Fire Debris Data
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Shoe Print Application
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Shoe Print 1 Shoe Print 2



Shoe Print Application
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RAC 1 RAC 2



Next Steps
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Where We Are

• Currently running samples using redesigned matrix and test mixture

• Working with practicing laboratories to run these samples

• Developing the objective hierarchy approach for data interpretation

• Developing the necessary methods to automate data analysis through 

AMDIS

• Working on the development of the Response Surface Methodology 

structure

• All of this work is just for to determine what settings matter

– Not part of what is envisioned for laboratories to have to run themselves

– This will minimize the work other laboratories will have to do
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Where We Hope To Go

While this is the vision of where we want to be, we are still acquiring the 

necessary foundational research to make this possible.
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Applying To Other Fields

Taking the lessons learned from the pilot study, we are also applying this 

process to optimization of a screening method for drugs of abuse.

• Same process, same factors, new test mixture

• Looking at DB-35 column instead of DB-1

• One forensic laboratory is also taking part in the study

• Drug analysis presents other challenges

• Carryover, solvent compatibility, and high boiling point compounds

• Believe the relative weighting of response factors will be much different 

than fire debris analysis
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Applying To Other Fields

Worked with Cayman Chemical to develop a custom test mixture.  

• 15 Compounds in isopropanol matrix

• Concentration of 250 µg/mL per compound

• Tried to span compound classes and retention times

(±)-Methamphetamine (S)-5-fluoro ADB

α-PVP  (HCl) Nandrolone

α-PBP  (HCl) Heroin

Ethylone (HCl) Furanyl Fentanyl (HCl)

Butylone (HCl)
Furanyl Fentanyl 3-

furancarboxamide Isomer (HCl)

PCP (HCl) Alprazolam

TCP (HCl) Stanozolol

Cocaine
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