Table of Contents | Teachin | g and Learning The Metric System | | |---------|---|----| | Unit 1 | | 1 | | | - Suggested Teaching Sequence | 1 | | | - Objectives | 1 | | | - Rules of Notation | 1 | | | - Metric Units, Symbols, and Referents | 2 | | | - Metric Prefixes | 2 | | | - Linear Measurement Activities | 3 | | | - Area Measurement Activities | 5 | | | - Volume Measurement Activities | 7 | | | - Mass (Weight) Measurement Activities | 9 | | | - Temperature Measurement Activities | 13 | | Unit 2 | | 12 | | | - Objectives | 12 | | | - Suggested Teaching Sequence | 12 | | | - Metrics in this Occupation | 12 | | | - Metric Units For Horticulture | 13 | | | - Trying Out Metric Units | 14 | | | - Growing With Metrics | 15 | | Unit 3 | | 16 | | | - Objective | 16 | | | - Suggested Teaching Sequence | 16 | | | - Metric-Metric Equivalents | 16 | | | - Changing Units at Work | 18 | | Unit 4 | | 19 | | | - Objective | 19 | | | - Suggested Teaching Sequence | 19 | | | - Selecting and Using Metric Instruments, Tools and Devices | 19 | | | - Which Tools for the Job? | 20 | | | - Measuring Up in Horticulture | 20 | | Unit 5 | | 2: | | | - Objective | 2: | | | - Suggested Teaching Sequence | 2: | | | - Metric-Customary Equivalents | 2: | | | - Conversion Tables | 22 | | | - Any Way You Want It | 23 | | | Metric Abilities | 24 | | | s to Exercises and Test | 25 | | | nd Devices List | | | Referen | nces | | The firm the standard flower than the standard flower than the standard flower the standard flower than flow The Martin Marti metrics for horticulture My frank he was the first the first than the first f ## TEACHING AND LEARNING THE METRIC SYSTEM This metric instructional package was designed to meet job-related metric measurement needs of students. To use this package students should already know the occupational terminology, measurement terms, and tools currently in use. These materials were prepared with the help of experienced vocational teachers, reviewed by experts, tested in classrooms in different parts of the United States, and revised before distribution. Each of the five units of instruction contains performance objectives, learning activities, and supporting information in the form of text, exercises, and tables. In addition, suggested teaching techniques are included. At the back of this package are objective-based evaluation items, a page of answers to the exercises and tests, a list of metric materials needed for the activities, references, and a list of suppliers. Classroom experiences with this instructional package suggest the following teaching-learning strategies: - 1. Let the first experiences be informal to make learning the metric system fun. - 2. Students learn better when metric units are compared to familiar objects. Everyone should learn to "think metric." Comparing metric units to customary units can be confusing. - 3. Students will learn quickly to estimate and measure in metric units by "doing." - 4. Students should have experience with measuring activities before getting too much information. - 5. Move through the units in an order which emphasizes the simplicity of the metric system (e.g., length to area to volume). - 6. Teach one concept at a time to avoid overwhelming students with too much material. <u>Unit 1</u> is a general introduction to the metric system of measurement which provides informal, hands-on experiences for the students. This unit enables students to become familiar with the basic metric units, their symbols, and measurement instruments; and to develop a set of mental references for metric values. The metric system of notation also is explained. Unit 2 provides the metric terms which are used in this occupation and gives experience with occupational measurement tasks. $\underline{\text{Unit 3}}$ focuses on job-related metric equivalents and their relationships. <u>Unit 4</u> provides experience with recognizing and using metric instruments and tools in occupational measurement tasks. It also provides experience in comparing metric and customary measurement instruments. $\underline{\text{Unit 5}}$ is designed to give students practice in converting customary and metric measurements. Students should learn to "think metric" and avoid comparing customary and metric units. However, skill with conversion tables will be useful during the transition to metric in each occupation. ## Using These Instructional Materials This package was designed to help students learn a core of knowledge about the metric system which they will use on the job. The exercises facilitate experiences with measurement instruments, tools, and devices used in this occupation and job-related tasks of estimating and measuring. This instructional package also was designed to accommodate a variety of individual teaching and learning styles. Teachers are encouraged to adapt these materials to their own classes. For example, the information sheets may be given to students for self-study. References may be used as supplemental resources. Exercises may be used in independent study, small groups, or whole-class activities. All of the materials can be expanded by the teacher. Gloria S Cooper Joel H. Magisos Editors This publication was developed pursuant to contract No. OEC-0-74-9335 with the Bureau of Occupational and Adult Education, U.S. Department of Health, Education and Welfare. However, the opinions expressed herein do not necessarily reflect the position or policy of the U.S. Office of Education and no official endorsement by the U.S. Office of Education should be inferred. ## UNIT 1 ## SUGGESTED TEACHING SEQUENCE - 1. These introductory exercises may require two or three teaching periods for all five areas of measurement. - 2. Exercises should be followed in the order given to best show the relationship between length, area, and volume. - Assemble the metric measuring devices (rules, tapes, scales, thermometers, and measuring containers) and objects to be measured.* - Set up the equipment at work stations for use by the whole class or as individualized resource activities. - 5. Have the students estimate, measure, and record using Exercises 1 through 5. - 6. Present information on notation and make Table 1 available. - 7. Follow up with group discussion of activities. ^{*}Other school departments may have devices which can be used. Metric suppliers are listed in the reference section. ## **OBJECTIVES** The student will demonstrate these skills for the Linear, Area, Volume or Capacity, Mass, and Temperature Exercises, using the metric terms and measurement devices listed here. | | | | | EXERCISES | 3 | | |----|--|---|--|--|--|---| | | SKILLS | Linear (pp. 3 - 4) | Area
(pp. 5 - 6) | Volume or Capacity
(pp. 7 - 8) | Mass (pp. 9 - 10) | Temperature (p. 11) | | 1. | Recognize and use the unit and its symbol for: | millimetre (mm) | square
centimetre
(cm ²) | cubic centi-
metre (cm ³) | gram (g)
kilogram (kg) | degree Celsius
(°C) | | 2. | Select, use, and read the appropriate measuring instruments for: | metre (m) | square
metre
(m ²) | cubic metre (m ³ ') | | *** | | 3. | State or show a physical reference for: | | | millilitre (ml) | | | | 4. | Estimate within 25% of the actual measure | height, width, or
length of objects | the area of
a given surface | capacity of containers | the mass of objects
in grams and kilo-
grams | the temperature of
the air or a liquid | | 5. | Read correctly | metre stick, metric
tape measure, and
metric rulers | | measurements on graduated volume measur- ing devices | a kilogram scale
and a gram scale | A Celsius thermomete | #### RULES OF NOTATION - 1. Symbols are not capitalized unless the unit is a proper name (mm not MM). - 2. Symbols are not followed by periods (m not m.). - 3. Symbols are not followed by an s for plurals (25 g not 25 gs). - 4. A space separates the numerals from the unit symbols (4 l not 4l). - 5. Spaces, not commas, are used to separate large numbers into groups of three digits (45 271 km not 45,271 km). - 6. A zero precedes the decimal point if the number is less than one (0.52 g not.52 g). - 7. Litre and metre can be spelled either with an -re or -er ending. ## METRIC UNITS, SYMBOLS, AND REFERENTS | Quantity | Metric Unit | Symbol | Useful Referents |
--|---------------------------------|-----------------|--| | Length | millimetre | inm | Thickness of dime or paper clip wire | | | centimetre | cm | Width of paper clip | | | metre | m | Height of door about 2 m | | Area | kilometre | km | 12-minute walking distance | | Area | square
centimetre | cm ² | Area of this space | | | square metre | m ² | Area of card table top | | | hectare | ha | Football field including sidelines and end zones | | Volume and | millilitre | ml | Teaspoon is 5 ml | | Volume and
Capacity | litre | 1 | A little more than 1 quart | | | cubic
centimetre | cm ³ | Volume of this container | | | cubic metre | m ³ | A little more than a cubic yard | | Mass | milligram | mg | Apple seed about 10 mg, grain of salt, 1 mg | | | gram | g | Nickel about 5 g | | | kilogram | kg | Webster's Collegiate Dictionary | | Market and the second s | metric ton
(1 000 kilograms) | t | Volkswagen Beetle | Table 1-a ## METRIC PREFIXES | Multiples and
Submultiples | Prefix es | Symbols | |-------------------------------|------------------|---------| | 1 000 000 = 10 ⁶ | mega (megʻa) | М | | 1 000 = 10 ³ | kilo (kil o) | k | | $100 = 10^2$ | hecto (hĕk'tō) | h | | 10 = 10 ¹ | deka (děk'a) | da | | Base Unit 1 = 10 ⁰ | | | | 0.1 = 10 ⁻¹ | deci (des i) | d | | $0.01 = 10^{-2}$ | centi (sĕn'ti) | c | | $0.001 = 10^{-3}$ | milli (mil'i) | m | | 0.000 001 = 10 ⁻⁶ | micro (mi'kro) | μ | Table 1-b ## LINEAR MEASUREMENT ACTIVITIES ## Metre, Centimetre, Millimetre ### I. THE METRE (m) ## A. DEVELOP A FEELING FOR THE SIZE OF A METRE 1. Pick up one of the metre sticks and stand it up on the floor. Hold it in place with one hand. Walk around the stick. Now stand next to the stick. With your other hand, touch yourself where the top of the metre stick comes on you. #### THAT IS HOW HIGH A METRE IS! 2. Hold one arm out straight at shoulder height. Put the metre stick along this arm until the end hits the end of your fingers. Where is the other end of the metre stick? Touch yourself at that end. THAT IS HOW LONG A METRE IS! 3. Choose a partner to stand at your side. Move apart so that you can put one end of a metre stick on your partner's shoulder and the other end on your shoulder. Look at the space between you. THAT IS THE WIDTH OF A METRE! ### B. DEVELOP YOUR ABILITY TO ESTIMATE IN METRES Now you will improve your ability to estimate in metres. Remember where the length and height of a metre was on your body. For each of the following items: Estimate the size of the items and write your estimate in the ESTIMATE column. Measure the size with your metre stick and write the answer in the MEASUREMENT column. Decide how close your estimate was to the actual measure. If your estimate was within 25% of the actual measure you are a "Metric Marvel." | | | Estimate (m) | Measurement (m) | How Close
Were You? | |----|---------------------------------|--------------|-----------------|------------------------| | 1. | Height of door knob from floor. | | | | | 2. | Height of door. | | | , | | 3. | Length of table. | | | | | 4. | Width of table. | | - | | | 5. | Length of wall of this room. | | | * | | 6. | Distance from you to wall. | | | | | | | | | | Exercise 1 (continued on next page) | | II. | THE | CENTIMETRE | (cm) |) | |--|-----|-----|------------|------|---| |--|-----|-----|------------|------|---| There are 100 centimetres in one metre. If there are 4 metres and 3 centimetres, you write $403 \text{ cm} [(4 \times 100 \text{ cm}) + 3 \text{ cm} = 400 \text{ cm} + 3 \text{ cm}]$. | | Λ | DEVELO | PΔ | FFFLING | FOR | THE SIZE | OF A | CENTIMETRE | |--|---|--------|----|---------|-----|----------|------|------------| |--|---|--------|----|---------|-----|----------|------|------------| | 1. | Hold the metric ruler against the width of your thumbnail. How wide is it? cm | |----|---| | 2. | Measure your thumb from the first joint to the end. | | 3. | Use the metric ruler to find the width of your palm cm | | 4. | Measure your index or pointing finger. How long is it? cm | | 5. | Measure your wrist with a tape measure. What is the distance around it? cm | | 6. | Use the tape measure to find your waist size cm | | | | #### B. DEVELOP YOUR ABILITY TO ESTIMATE IN CENTIMETRES You are now ready to estimate in centimetres. For each of the following items, follow the procedures used for estimating in metres. | | | | | How Close | |---|---------|---------------|---|-----------| | | | Estimate (cm) | Measurement (cm) | Were You? | | 1. Length of clip. | a paper | | | - | | 2. Diameter of a coin. | (width) | | | | | Width of a postage st | | | | | | 4. Length of pencil. | a | | AND THE RESIDENCE OF THE PARTY | | | 5. Width of a of paper. | a sheet | | | | #### III. THE MILLIMETRE (mm) There are 10 millimetres in one centimetre. When a measurement is 2 centimetres and 5 millimetres, you write 25 mm [$(2 \times 10 \text{ mm}) + 5 \text{ mm} = 20 \text{ mm} + 5 \text{ mm}$]. There are 1 000 mm in 1 m. ### A. DEVELOP A FEELING FOR THE SIZE OF A MILLIMETRE Using a ruler marked in millimetres, measure: Width of a postage stamp. | 1. | Thickness of a paper clip wire. | | mm | |----|--------------------------------------|---|----| | 2. | Thickness of your fingernail. | - | mm | | 3. | Width of your fingernail. | | mm | | 4. | Diameter (width) of a coin. | | mm | | 5. | Diameter (thickness) of your pencil. | - | mm | #### B. DEVELOP YOUR ABILITY TO ESTIMATE IN MILLIMETRES You are now ready to estimate in millimetres. For each of the following items, follow the procedures used for estimating in metres. | | | Estimate (mm) | Measurement (mm) | How Close
Were You? | |----|-----------------------------------|---------------
------------------|------------------------| | 1. | Thickness of a nickel. | | | | | 2. | Diameter (thickness) of a bolt. | | | | | 3. | Length of a bolt. | - | | - | | 4. | Width of a sheet of paper. | | | | | 5. | Thickness of a board or desk top. | | | * | | 6. | Thickness of a button. | - | | | ## AREA MEASUREMENT ACTIVITIES ## Square Centimetre, Square Metre WHEN YOU DESCRIBE THE AREA OF SOMETHING, YOU ARE SAYING HOW MANY SQUARES OF A GIVEN SIZE IT TAKES TO COVER THE SURFACE. | I. | THE | SQUARE | CENTIMETRE | (cm^2) | | |----|-----|--------|------------|----------|--| |----|-----|--------|------------|----------|--| #### A. DEVELOP A FEELING FOR A SQUARE CENTIMETRE - 1. Take a clear plastic grid, or use the grid on page 6. - 2. Measure the length and width of one of these small squares with a centimetre ruler. ## THAT IS ONE SQUARE CENTIMETRE! - 3. Place your fingernail over the grid. About how many squares does it take to cover your fingernail? ____cm^2 - 4. Place a coin over the grid. About how many squares does it take to cover the coin? _____cm² - 5. Place a postage stamp over the grid. About how many squares does it take to cover the postage stamp? - 6. Place an envelope over the grid. About how many squares does it take to cover the envelope? - 7. Measure the length and width of the envelope in centimetres. Length _____ cm; width _____ cm. Multiply to find the area in square centimetres. ____ cm x ____ cm = ____ cm². How close are the answers you have in 6. and in 7.? ## THE CENTER FOR VOCATIONAL EDUCATION ## B. DEVELOP YOUR ABILITY TO ESTIMATE IN SQUARE CENTIMETRES You are now ready to develop your ability to estimate in square centimetres. Remember the size of a square centimetre. For each of the following items, follow the procedures used for estimating in metres. | | | Estimate (cm ²) | Measurement (cm ²) | How Close
Were You? | |----|--------------------------|-----------------------------|--------------------------------|------------------------| | 1. | Index card. | | | | | 2. | Book cover. | | | | | 3. | Photograph. | | | | | 4. | Window pane or desk top. | 400.00 | | | ## II. THE SQUARE METRE (m²) ## A. DEVELOP A FEELING FOR A SQUARE METRE - 1. Tape four metre sticks together to make a square which is one metre long and one metre wide. - 2. Hold the square up with one side on the floor to see how big it is. - 3. Place the square on the floor in a corner. Step back and look. See how much floor space it covers. - 4. Place the square over a table top or desk to see how much space it covers. - 5. Place the square against the bottom of a door. See how much of the door it covers. How many squares would it take to cover the door? ____m² THIS IS HOW BIG A SQUARE METRE IS! | B. | DEVELOP YOUR ABILITY TO ESTIMATE IN SQUARE METRES | | | | | | CE | NT | IME | TR | E GI | RID | | A | | | | | | | | |----|---|-----------|--------|--------|------------------------------|--------|---------------|----------------------|-----------|-------------------|------|-----|--|----------|----|---|---|--|--|---|--| | | You ar | e now | ready | to est | timate | in squ | are me | etres. | Follov | w the | | | | | | | | | | | | | | proced | Estimation (m ²) | | leasure
(m | ement ²) | | v Close
e You' | ? | | | | | | | | | | | | 1. | Door. | | | | | | | | | | - | | | | | | | | | | | | 2. | Full sh
newspa | | | | | | V. | | | | | | | | | | | | | | | | 3. | Chalkb
bulletii | | | | | | | | disamenta | | | | | | | | | | | | | | 4. | Floor. | | | | | | | | | | | | | <u> </u> | | | | | | | | | 5. | Wall. | | | | | | | | - | | • | | | | | | | | | | | | 6. | Wall ch | | | | - | | | | - | | - | | | | | | | | | | | | 7. | Side of | f file ca | abinet | | | | | | - | | - | - | | - | - | , | £* | | | | | | | | | | | | | | | | | | | , i | | | | | | | | | ¥ | | | | | | | | | | | | | | | | | | | - | | | | | | ## VOLUME MEASUREMENT ACTIVITIES ## Cubic Centimetre, Litre, Millilitre, Cubic Metre | T | CERTCE | CITTIC | CENTRAL COMPTE | 1 3 | | |----|--------|--------|----------------|-----|---| | I. | IHE | CORIC | CENTIMETRE | (cm |) | ## A. DEVELOP A FEELING FOR THE CUBIC CENTIMETRE - Pick up a colored plastic cube. Measure its length, height, and width in centimetres. THAT IS ONE CUBIC CENTIMETRE! - 2. Find the volume of a plastic litre box. the volume in cubic centimetres. Are the answers the same in c. and d.? | a. | of the box. How many cubes fit in the row? | |----|---| | b. | Place another ROW of cubes against an adjoining side of the box. How many rows fit inside the box to make one layer of cubes? | | | How many cubes in each row? | | | How many cubes in the layer in the bottom of the box? | | c. | Stand a ROW of cubes up against the side of the box. How many LAYERS would fit in the box? | | | How many cubes in each layer? | | | How many cubes fit in the box altogether? | | | THE VOLUME OF THE BOX ISCUBIC CENTIMETRES. | | d. | Measure the length, width, and height of the box in centimetres. Lengthcm; widthcm heightcm. Multiply these numbers to find | $_{\text{cm x}}$ $_{\text{cm x}}$ $_{\text{cm}}$ $_{\text{c$ ## B. DEVELOP YOUR ABILITY TO ESTIMATE IN CUBIC CENTIMETRES You are now ready to develop your ability to estimate in cubic centimetres. Remember the size of a cubic centimetre. For each of the following items, use the procedures for estimating in metres. | | | Measurement (cm ³) | Were You? | |----|----------------------|--------------------------------|-----------| | 1. | Index card file box. | | | | 2. | Freezer container. | | | | 3. | Paper clip box. | | | | 4 | Box of staples. | | | ## II. THE LITRE (1) ## A. DEVELOP A FEELING FOR A LITRE - 1. Take a one litre beaker and fill it with water. - Pour the water into paper cups, filling each as full as you usually do. How many cups do you fill? THAT IS HOW MUCH IS IN ONE LITRE! - 3. Fill the litre container with rice. THAT IS HOW MUCH IT TAKES TO FILL A ONE LITRE CONTAINER! #### B. DEVELOP YOUR ABILITY TO ESTIMATE IN LITRES You are now ready to develop your ability to estimate in litres. To write two and one-half litres, you write 2.5 l, or 2.5 litres. To write one-half litre, you write 0.5 l, or 0.5 litre. To write two and three-fourths litres, you write 2.75 l, or 2.75 litres. For each of the following items, use the procedures for estimating in metres. | estin | nating in metres. | Estimate (l) | Measurement (1) | How Close
Were You? | |-------|--------------------------------|-----------------------|-----------------|------------------------| | 1. | Medium-size freezer container. | | | - | | 2. | Large freezer container. | | | | | 3. | Small freezer container. | and the second second | - | | | 4. | Bottle or jug. | | | | ## III. THE MILLILITRE (ml) There are 1 000 millilitres in one litre. 1 000 ml = 1 litre. Half a litre is 500 millilitres, or 0.5 litre = 500 ml. #### A. DEVELOP A FEELING FOR A MILLILITRE - 1. Examine a centimetre cube. Anything which holds 1 cm³ holds 1 ml. - 2. Fill a 1 millilitre measuring spoon with rice. Empty the spoon into your hand. Carefully pour the rice into a small pile on a sheet of paper. THAT IS HOW MUCH ONE MILLILITRE IS! 3. Fill the 5 ml spoon with rice. Pour the rice into another pile on the sheet of paper. THAT IS 5 MILLILITRES, OR ONE TEASPOON! 4. Fill the 15 ml spoon with rice. Pour the rice into a third pile on the paper. THAT IS 15 MILLILITRES, OR ONE TABLESPOON! #### B. DEVELOP YOUR ABILITY TO ESTIMATE IN MILLILITRES You are now ready to estimate in millilitres. Follow the procedures used for estimating metres. | | | Estimate (ml) | Measurement (ml) | How Close
Were You? | |----|------------------|---------------|------------------|------------------------| | 1. | Small juice can. | - | | | | 2. | Paper cup or tea | | | | | 3. | Soft drink can. | | | | | 4. | Bottle. | | | | ## IV. THE CUBIC METRE (m3) #### A. DEVELOP A FEELING FOR A CUBIC METRE - 1. Place a one metre square on the floor next to the wall. - 2. Measure a metre UP the wall. - 3. Picture a box that would fit into that space. THAT IS THE VOLUME OF ONE CUBIC METRE! #### B. DEVELOP YOUR ABILITY TO ESTIMATE IN CUBIC METRES For each of the following items, follow the estimating procedures used before. | | , | Estimate (m ³) | Measurement (m ³) | Were You? | |----|---------------|----------------------------
--|-----------| | 1. | Office desk. | | the commence of o | | | 2. | File cabinet. | | | | | 3. | Small room. | | | | How Close ## MASS (WEIGHT) MEASUREMENT ACTIVITIES ## Kilogram, Gram The mass of an object is a measure of the amount of matter in the object. This amount is always the same unless you add or subtract some matter from the object. Weight is the term that most people use when they mean mass. The weight of an object is affected by gravity; the mass of an object is not. For example, the weight of a person on earth might be 120 pounds; that same person's weight on the moon would be 20 pounds. This difference is because the pull of gravity on the moon is less than the pull of gravity on earth. A person's mass on the earth and on the moon would be the same. The metric system does not measure weight--it measures mass. We will use the term mass here. The symbol for gram is g. The symbol for kilogram is kg. There are 1 000 grams in one kilogram, or 1 000 g = 1 kg. Half a kilogram can be written as 500 g,or 0.5 kg. A quarter of a kilogram can be written as 250 g,or 0.25 kg. Two and three-fourths kilograms is written as $2.75\ kg$. ## I. THE KILOGRAM (kg) DEVELOP A FEELING FOR THE MASS OF A KILOGRAM Using a balance or scale, find the mass of the items on the table. Before you find the mass, notice how heavy the object "feels" and compare it to the reading on the scale or balance. | | | Mass
(kg) | | | |----|---|---|--|------------------------------| | 1. | 1 kilogram box. | | | | | 2. | Textbook. | | | | | 3. | Bag of sugar. | - | | | | 4. | Package of paper. | | | , | | 5. | Your own mass. | - | | | | B. | DEVELOP YOUR A For the following ite kilograms, then use t of the object. Write column. Determine | ems ESTIMAT
The scale or bal
the exact mass | E the mass of the
lance to find the
s in the MEASU | ne object in
e exact mass | | | Column. Descrimine | Estimate (kg) | Measurement (kg) | How Close
Were You? | | 1. | Bag of rice. | | | | | 2. | Bag of nails. | - | Market State of the th | | | 3. | Large purse or briefcase. | | | | | | biicicasc. | | | | | 4. | Another person. | - | | | 5. A few books. #### II. THE GRAM (g) #### A. DEVELOP A FEELING FOR A GRAM 1. Take a colored plastic cube. Hold it in your hand. Shake the cube in your palm as if shaking dice. Feel the pressure on your hand when the cube is in motion, then when it is not in motion. THAT IS HOW HEAVY A GRAM IS! 2. Take a second cube and attach it to the first. Shake the cubes in first one hand and then the other hand; rest the cubes near the tips of your fingers, moving your hand up and down. THAT IS THE MASS OF TWO GRAMS! 3. Take five cubes in one hand and shake them around. THAT IS THE MASS OF FIVE GRAMS! #### B. DEVELOP YOUR ABILITY TO ESTIMATE IN GRAMS You are now ready to improve your ability to estimate in grams. Remember how heavy the 1 gram cube is, how heavy the two gram cubes are, and how heavy the five gram cubes are. For each of the following items, follow the procedures used for estimating in kilograms. | | | Estimate (g) | Measurement (g) | How Close
Were You? | |----|-------------------------------|---|--|------------------------| | 1. | Two thumbtacks. | | | | | 2. | Pencil. | *************************************** | *************************************** | | | 3. | Two-page letter and envelope. | | | | | 4. | Nickel. | | | | | 5. | Apple. | | Andrews Massing Supplied to a prospin consist of the annual of | | | 6. | Package of margarine. | | | | ## TEMPERATURE MEASUREMENT ACTIVITIES ## Degree Celsius | I. | DECREE | CELSIUS | (°C) | |----|--------|---------|------| | ı. | DEGREE | CELSIUS | (0) | Degree Celsius (°C) is the metric measure for temperature. #### A. DEVELOP A FEELING FOR DEGREE CELSIUS Take a Celsius thermometer. Look at the marks on it. - Find 0 degrees. WATER FREEZES AT ZERO DEGREES CELSIUS (0°C) WATER BOILS AT 100 DEGREES CELSIUS (100°C) - 2. Find the temperature of the room. ____°C. Is the room cool, warm, or about right? - 3. Put some hot water from the faucet into a container. Find the temperature. _____ °C. Dip your finger quickly in and out of the water. Is the water very hot, hot, or just warm? - 4. Put some cold water in a container with a thermometer. Find the temperature. _____ °C. Dip your finger into the water. Is it cool, cold, or very cold? - 5. Bend your arm with the inside of your elbow around the bottom of the thermometer. After about three minutes find the temperature. °C. Your skin temperature is not as high as your body temperature. NORMAL BODY TEMPERATURE IS 37 DEGREES CELSIUS (37°C). A FEVER IS 39°C. A VERY HIGH FEVER IS 40°C. ## B. DEVELOP YOUR ABILITY TO ESTIMATE IN DEGREES CELSIUS For each item, ESTIMATE and write down how many degrees Celsius you think it is. Then measure and write the MEASURE-MENT. See how close your estimates and actual measurements are. | | | Estimate (°C) | Measurement (°C) | How Close
Were You? | |----|--|---------------------------|------------------|------------------------| | 1. | Mix some hot and cold water in a container. Dip your finger into the water. | | | | | 2. | Pour out some of
the water. Add some
hot water. Dip your
finger <u>quickly</u> into
the water. | | | | | 3. | Outdoor temperature. | | | | | 4. | Sunny window sill. | | | | | 5. | Mix of ice and water. | - | | | | 6. | Temperature at floor. | | | | | 7. | Temperature at ceiling. | Management and Publishers | | | # UNIT 2 #### **OBJECTIVES** The student will recognize and use the metric terms,
units, and symbols used in this occupation. - Given a metric unit, state its use in this occupation. - Given a measurement task in this occupation, select the appropriate metric unit and measurement tool. ### SUGGESTED TEACHING SEQUENCE - 1. Assemble metric measurement tools (rules, tapes, scales, thermometers, etc.) and objects related to this occupation. - Discuss with students how to read the tools. - 3. Present and have students discuss Information Sheet 2 and Table 2. - 4. Have students learn occupationallyrelated metric measurements by completing Exercises 6 and 7. - 5. Test performance by using Section A of "Testing Metric Abilities." ## METRICS IN THIS OCCUPATION Changeover to the metric system is under way. Large corporations are already using metric measurement to compete in the world market. The metric system has been used in various parts of industrial and scientific communities for years. Legislation, passed in 1975, authorizes an orderly transition to use of the metric system. As businesses and industries make this metric changeover, employees will need to use metric measurement in job-related tasks. Table 2 lists those metric terms which are most commonly used in this occupation. These terms are replacing the measurement units used currently. What kinds of jobrelated tasks use measurement? Think of the many different kinds of measurements you now make and use Table 2 to discuss the metric terms which replace them. See if you can add to the list of uses beside each metric term. ## METRIC UNITS FOR HORTICULTURE | QUANTITY | UNIT | SYMBOL | USE | | |--------------------------------------|---------------------------------|-------------------|--|--| | Length | millimetre | mm · | rainfall, soil depth | | | | centimetre | cm | ribbon, floral arrangement | | | | metre | m | bed in greenhouse, table
length, irrigation hose or pipe | | | Area | square centimetre | cm ² | walk, sod, concrete, bed | | | | square metre | m ² | | | | | hectare | ha | sod, orchard, field | | | Volume/
Capacity | millilitre | ml | sprays, liquid fertilizers, water per plant, growth regulators | | | | litre | 1 | liquid fertilizers, pesticides, fungicides | | | Temperature | degree Celsius | °C | greenhouse night or day, plant growth requirement | | | Mass | gram | g | fertilizers, rooting hormones | | | | kilogram | kg | compost, fertilizers, crops, soil | | | | metric ton | t | compost, soil | | | Application Rates
Dry or granular | grams per square
meter | g/m ² | seed, fertilizer, pesticides | | | | kilograms per
hectare | kg/ha | seed, fertilizer, pesticides | | | Liquid | millilitres per
square metre | ml/m ² | fertilizer, pesticides | | | | litres per square
metre | l/m² | soil sterilants | | | | litres per hectare | l/ha | liquid fertilizer, pesticides | | | Dilutions or
Concentrates | grams per
kilogram | g/kg | fertilizer, pesticides | | | Dry mixes | kilograms per
metric ton | kg/t | | | | | grams per cubic
metre | g/m ³ | seedbed preparation, compost | | | | kilograms per
metric ton | kg/t | secused preparation, composi | | | QUANTITY | UNIT | SYMBOL | USE | |--|--|-------------------|---| | Dilutions or
Concentrates
(Cont'd) | | 20 | | | Liquids | millilitres per
litre | ml/l | fertilizer, sprays, pesticides, | | | grams per litre
(powder mixed
in liquid) | g/l | cleaning solutions | | Density | kilograms per
cubic metre | kg/m ³ | storage capacity of tanks, bins, storage areas | | Crop Yields | kilograms per
square metre | kg/m ² | greenhouse vegetables | | | kilograms per
hectare | kg/ha | field and orchard crops | | | metric ton per
hectare | t/ha | | | Pressure | kilopascals | kPa | liquids and gases, tire pressure,
spray tank pressure,
sterilizing soil | | Wind speed | kilometres per
hour | km/h | sowing, spraying, fertilizing, plant protection | | Depth of water applied to soil | millimetres per
square metre | mm/m ² | | | u . | millimetres per
hectare | mm/ha | | | Flow Rates | litres per second | l/s | irrigation | | | cubic metres per
second | m ³ /s | | | Velocity of
Flow | metres per
second | m/s | | | Water holding capacity of soil | millimetre per
millimetre | mm/mm | | ## TRYING OUT METRIC UNITS To give you practice with metric units, first estimate the measurements of the items below. Write down your best guess next to the item. Then actually measure the item and write down your answers using the correct metric symbols. The more you practice, the easier it will be. | | | Estimate | Actual | |-------------|-----------------------------|----------|---------| | Length 1. | Palm width | | | | 2. | Hand span | | | | 3. | Your height | | | | 4. | Grass height | * | | | 5. | Space between plant rows | | | | 6. | Mature or cut flower length | | × | | 7. | Shrub height | | 4 | | 8. | Small tree height | · | | | 9. | Greenhouse or lawn | | - B - F | | Area
10. | Desk top | | | | 11. | Classroom floor | * | | | 12. | Greenhouse bench | | | | 13. | Lawn or plot | | | | 14. | Sheet of paper | | | | | Capacity Small bottle | | | | | | Estimate | Actual | |---------------|--|----------|--| | 16. | Measuring cup (metric) | | | | 17. | Oasis | | | | 18. | Pots | | | | 19. | Bucket | | | | 20. | Small box or package | | | | 21. | Crop container (basket, crate, bag) | | | | 22. | Freezer container | - | | | Mass
23. | Textbook | | | | 24. | Nickel | | | | 25. | Yourself | | | | 26. | A bag of fertilizer | | | | 27. | A quantity of seed or soil conditioner | V | | | 28. | A litre of water (net) | | | | Temper
29. | ature
Room temperature | | oran engerment e na Governorske na Adria Agent | | 30. | Outside temperature | | er eller | | 31. | Hot tap water | | | | 32. | Soil temperature | | | ## GROWING WITH METRICS | wha | It is important to know what meta
t measurement to use in the following | | |-----|--|----| | 1. | Height of floral table centerpiece | y. | | 2. | Dilution rate for a liquid fertilizer | | | 3. | Application rate for granular fertilizer | | | 4. | Application rate for a liquid insecticide | ~ | | 5. | Yield rate of greenhouse tomatoes | | | 6. | Spark plug gap | | | 7. | Height of mature fruit tree | | | 8. | Application rate of lime to lawn | | | 9. | Fertilizer rate to potting mixture | | | 10. | Insecticide spray rate to green-
house bench | | | 11. | Mixing rate for rooting hormone | | | 12. | Height of cabbage seedling transplant | | | 13. | Seeding rate for a field | | | 14. | Maximum wind speed tolerable for spraying | | | 15. | Tire pressure for rear tractor tires | | | 16. | Yield of apple orchard | | | 17. | Storage capacity of potting mixture bin | | |-----|---|--| | 18. | Excavation necessary for swimming pool | | | 19. | Flow rate for ditch irrigation | | | 20. | Length of stemmed roses for sale | | | 21. | Length of scions for grafting fruit trees | | | 22. | Capacity of tractor fuel tank | | # 3 UNIT #### **OBJECTIVE** The student will recognize and use metric equivalents. Given a metric unit, state an equivalent in a larger or smaller metric unit. ### SUGGESTED TEACHING SEQUENCE - 1. Make available the Information Sheets (3 8) and the associated Exercises (8 14), one at a time. - As soon as you have presented the Information, have the students complete each Exercise. - 3. Check their answers on the page titled ANSWERS TO EXERCISES AND TEST. - 4. Test performance by using Section B of "Testing Metric Abilities." ## METRIC-METRIC EQUIVALENTS Centimetres and Millimetres Look at the picture of the nail next to the ruler. The nail is $57 \text{ mm} \log$. This is 5 cm + 7 mm. There are 10 mm in each cm, so 1 mm = 0.1 cm (one-tenth of a centimetre). This means that $$7 \text{ mm} = 0.7 \text{ cm}$$, so $57 \text{ mm} = 5 \text{ cm} + 7 \text{ mm}$ = $5 \text{ cm} + 0.7 \text{ cm}$ = 5.7 cm. Therefore 57 mm is the same as 5.7 cm. Now measure the paper clip. It is 34 mm. This is the same as $3 \text{ cm} + \underline{\hspace{1cm}}$ mm. Since each millimetre is 0.1 cm (one-tenth of a centimetre), $4 \text{ mm} = \underline{\hspace{1cm}}$ cm. So, the paper clip is 34 mm = 3 cm + 4 mm = 3 cm + 0.4 cm = 3.4 cm. This means that 34 mm is the same as 3.4 cm. Information Sheet 3 Now you try some. Exercise 8 ## Metres, Centimetres, and Millimetres There are 100 centimetres in one metre. Thus, $2 m = 2 \times 100 cm = 200 cm$, $3 \text{ m} = 3 \times 100 \text{ cm} = 300 \text{ cm}$ $8 \text{ m} = 8 \times 100 \text{ cm} = 800 \text{ cm}$ 36 m = 36 x 100 cm = 3 600 cm. There are 1 000 millimetres in one metre, so $2 m = 2 \times 1000 mm = 2000 mm$, $3 \text{ m} = 3 \times 1000 \text{ mm} = 3000 \text{ mm}$ $6 \text{ m} = 6 \times 1000 \text{ mm} = 6000 \text{ mm}$ 24 m = 24 x 1 000 mm = 24 000 mm. From your work with decimals you should know that one-half of a metre can be written 0.5 m (five-tenths of a metre), one-fourth of a centimetre can be written 0.25 cm (twenty-five hundredths of a centimetre). This means that if you want to change three-fourths of a metre to millimetres, you would multiply by 1 000. So $0.75 \text{ m} = 0.75 \times 1000 \text{ mm}$ $=\frac{75}{100} \times 1000 \text{ mm}$ $= 75 \times \frac{1000}{100} \text{mm}$ $= 75 \times 10 \text{ mm}$ = 750 mm. This means that 0.75 m = 750 mm. ## Information Sheet 4 Fill in the following chart. | metre
m | centimetre
cm | millimetre
mm |
--|------------------|------------------| | 1 | 100 | 1 000 | | 2 . | 200 | | | 3 | | | | 9 | | | | | | 5 000 | | 74 | , | | | 0.8 | 80 | | | 0.6 | | 600 | | | 2.5 | 25 | | COLUMN TO SERVICE DE CONTRACTOR CONTRACTO | | 148 | | | 639 | | ## Millilitres to Litres There are 1 000 millilitres in one litre. This means that 2 000 millilitres is the same as 2 litres. 3 000 ml is the same as 3 litres, 4 000 ml is the same as 4 litres, 12 000 ml is the same as 12 litres. Since there are 1 000 millilitres in each litre, one way to change millilitres to litres is to divide by 1 000. For example, Or $$1\ 000\ ml = \frac{1\ 000}{1\ 000}\ litre = 1\ litre.$$ 2 000 ml = $$\frac{2\ 000}{1\ 000}$$ litres = 2 litres. And, as a final example, $$28\ 000\ \text{ml} = \frac{28\ 000}{1\ 000}\ \text{litres} = 28\ \text{litres}.$$ What if something holds 500 ml? How many litres is this? This is worked the same way. $500~ml=\frac{500}{1~000}$ litre = 0.5 litre (five-tenths of a litre). So 500 ml is the same as one-half (0.5) of a litre. Change 57 millilitres to litres. $57 \text{ ml} = \frac{57}{1000} \text{ litre} = 0.057 \text{ litre (fifty-seven thousandths of a litre)}.$ ## Information Sheet 5 Now you try some. Complete the following chart. | and the second second second second | |-------------------------------------| | litres
(1) | | (1) | | 3 | | 191 | | 8 | | | | 23 | | 0.3 | | | | 0.9 | | | | 0.47 | | | | | ## Litres to Millilitres What do you do if you need to change litres to millilitres? Remember, there are 1 000 millilitres in one litre, or 1 litre = 1 000 ml. So, Information Sheet 6 Now you try some. Complete the following chart. | litres
l | millilitres
ml | |-------------|-------------------| | 8 | 8 000 | | 5 | | | 46 | | | | 32 000 | | 0.4 | | | 0.53 | | | | 480 | Exercise 11 ## Grams to Kilograms There are 1 000 grams in one kilogram. This means that 2 000 grams is the same as 2 kilograms, 5 000 g is the same as 5 kg, 700 g is the same as 0.7 kg, and so on. To change from grams to kilograms, you use the same procedure for changing from millilitres to litres. Try the following ones. Information Sheet 7 | grams
g | kilograms
kg | |------------|-----------------| | 4 000 | 4 | | 9 000 | | | 23 000 | | | - | 8 | | 300 | | | 275 | 1 | Exercise 12 ## Kilograms to Grams To change kilograms to grams, you multiply by 1 000. Information Sheet 8 Complete the following chart. | kilograms
kg | grams
g | |-----------------|------------| | 7 | 7 000 | | 11 | | | | 25 000 | | 0.4 | | | 0.63 | | | | 175 | Exercise 13 ## Changing Units at Work Some of the things you use in this occupation may be measured in different metric units. Practice changing each of the following to metric equivalents by completing these statements. | a) 500 cm of rope is | m | |----------------------------------|----| | b) 250 ml of solution is | 1 | | c) 5 cm diameter pipe is | mm | | d) 2 500 g of seed is | kg | | e) 120 mm root cutting is | cm | | f) 0.25 l of liquid nutrient is | ml | | g) 2 000 kg of soil is | t | | h) 0.5 l of concentrate is | ml | | i) 2 m board is | mm | | j) 500 g of seed is | kg | | k) 500 ml rooting hormone is | 1 | | 1) 0.5 t of fertilizer is | kg | | m) 10 m of wire is | em | | n) 2.5 cm diameter pipe is | mm | | o) 2 400 mm flower bed is | cm | ## UNIT 4 ## **OBJECTIVE** The student will recognize and use instruments, tools, and devices for measurement tasks in horticultural occupations. - Given metric and Customary tools, instruments, or devices, differentiate between metric and Customary. - Given a horticultural measurement task, select and use an appropriate tool, instrument or device. - Given a metric measurement task, judge the metric quantity within 25% and measure within 5% accuracy. ## SUGGESTED TEACHING SEQUENCE - 1. Assemble metric and Customary measuring tools and devices (rules, scales, °C thermometer, drill bits, wrenches, micrometer, vernier calipers, feeler gages) and display in separate groups at learning stations. - 2. Have students examine metric tools and instruments for distinguishing characteristics and compare them with Customary tools and instruments. - 3. Have students verbally describe characteristics. - 4. Present or make available Information Sheet 9. - 5. Mix metric and Customary tools or equipment at learning station. Give students Exercises 15 and 16. - 6. Test performance by using Section C of "Testing Metric Abilities." ## SELECTING AND USING METRIC INSTRUMENTS , TOOLS AND DEVICES Selecting an improper tool or misreading a scale can result in an improper sales form, damaged materials, or injury to self or fellow workers. For example, putting 207 pounds per square inch of pressure (psi) in a tractor tire designed for 207 kilopascals (about 30 psi) could cause a fatal accident. Here are some suggestions: - 1. Find out in advance whether Customary or metric units, tools, instruments, or products are needed for a given task. - 2. Examine the tool or instrument before using it. - 3. The metric system is a decimal system. Look for units marked off in whole numbers, tens or tenths, hundreds or hundredths. - 4. Look for metric symbols on the tools or gages such as m, mm, kg, g, kPa, etc. - 5. Look for decimal fractions (0.25) or decimal mixed fractions (2.50) rather than common fractions (3/8) on drill bits, feeler gages, etc. - 6. Some products may have a special metric symbol such as a block M to show they are metric. - 7. Don't force bolts, wrenches, or other devices which are not fitting properly. - 8. Practice selecting and using tools, instruments, and devices. ## WHICH TOOLS FOR THE JOB? Practice and prepare to demonstrate your ability to *identify*, *select*, *and use* metric-scaled tools and instruments for the tasks given below. You should be able to use the measurement tools to the appropriate precision of the tool, instrument, or task. Select and demonstrate or describe use of tools, instruments, or devices to: - 1. Fill customer order for 1.5 kg of bulk grass seed. - Order pre-mixed concrete for a sidewalk as long as your classroom and 1 m wide and 10 cm thick. - Fill customer order for a floral design 40 cm high with a diameter of 50 cm. - 4. Calculate seed and fertilizer needed for a lawn the size of your classroom. - 5. Adjust the height of cut of reel and rotary mowers properly. - Measure and dilute wettable powders to be used in a small hand sprayer. - 7. Estimate the cost of a simple tile drainage system the size of your classroom. - Calculate and prepare the amount of liquid pesticide needed for a small area. - 9. Check proper temperatures in seedbed or storage areas. - Prepare and use a liquid herbicide. The directions state: Mix 30 ml of herbicide with 4.5 l water; spray evenly over an area of 24 m². - 11. Space trees in an orchard. - 12. Change sparkplug(s) in small engine. - 13. Determine the storage area in your cut flower cooler so you can compare it with a new model being advertised. ## MEASURING UP IN HORTICULTURE For the horticultural tasks below, estimate the metric measurement to within 25% of actual measurement, and verify the estimation by measuring to within 5% of actual measurement. | | | Estimate | Verify | |-----|--|----------|--------| | 1. | Cuttings for rooting. | | | | 2. | Greenhouse bench, pot, or container with propagation medium. | | | | 3. | Temperatures of: a. room | | | | | b. outside | | | | | c. in-door propagation area | | | | | d. seed, cut-flower, or rooting storage area | | | | 4. | Height of young trees or shrubs in centimetres. | | | | 5. | Mower cutting height in centimetres. | | | | 6. | Size of brandy snifter
for floral design in
litres. | | N 5 | | 7. | The spacing of trees in an orchard. | | | | 8. | Scions for fruit tree grafting. | | | | 9. | Floral design in centimetres: a. height | | | | | b. diameter | 2 | | | .0. | Volume of a storage
bin. | | | | 1. | Area of a lawn or staked-
off area. | | | # 5 #### **OBJECTIVE** The student will recognize and use metric and Customary units interchangeably in ordering, selling, and using products and supplies in this occupation. - Given a Customary (or metric) measurement, find the metric (or Customary) equivalent on a conversion table. - Given a Customary unit, state the replacement unit. ## SUGGESTED TEACHING SEQUENCE - Assemble packages and containers of materials. - 2. Present or make available Information Sheet 10 and Table 3. - 3. Have students find approximate metric-Customary equivalents by using Exercise 17. - 4. Test performance by using Section D of "Testing Metric Abilities." ## METRIC-CUSTOMARY EQUIVALENTS During the transition period there will be a need for finding equivalents between systems. Conversion tables list calculated equivalents between the two systems. When a close equivalent is needed, a conversion table can be used to find it. Follow these steps: - 1. Determine which conversion table is needed. - 2. Look up the known number in the appropriate column; if not listed, find numbers you can add together to make the total of the known number. - 3. Read the equivalent(s) from the next column. Table 3 on the next page gives an example of a metric-Customary conversion table which you can use for practice in finding approximate equivalents. Table 3 can be used with Exercise 17, Part 2 and Part 3. Below is a table of metric-Customary equivalents which tells you what the metric replacements for Customary units are.* This table can be used with Exercise 17, Part 1 and Part 3. The symbol \approx means "nearly equal to." | 1 inch ≈ 2.54 cm
1 foot ≈ 0.305 m | $1 \text{ ml} \approx 0.2 \text{ tsp}$
$1 \text{ ml} \approx 0.07 \text{ tbsp}$ | $1 \text{ tsp} \approx 5 \text{ ml}$
$1 \text{ tbsp} \approx 15 \text{ ml}$ | |--|---|--| | 1 yard ≈ 0.91 m | $1 l \approx 33.8 \text{ fl oz}$ | 1 fl oz \approx 29.6 ml | | 1 mile ≈ 1.61 km | $11 \approx 4.2 \text{ cups}$ | 1 cup ≈ 237 ml | | 1 sq in $\approx 6.5 \text{ cm}^2$ | $1 l \approx 2.1 pts$ | $1 \text{ pt} \approx 0.47 \text{ l}$ | | $1 \text{ sq ft} \approx 0.09 \text{ m}^2$ | $1 l \approx 1.06 qt$ | $1 \text{ qt} \approx 0.95 \text{ l}$ | | $1 \text{ sq yd} \approx 0.8 \text{ m}^2$ | $1 l \approx 0.26 \text{ gal}$ | 1 gal ≈ 3.79 l | | 1 acre ≈ 0.4 hectare | 1 gram ≈ 0.035 oz | $1 \text{ oz} \approx 28.3 \text{ g}$ | | 1 cu in ≈ 16.4 cm ³ | $1 \text{ kg} \approx 2.2 \text{ lb}$ | $1 \text{ lb} \approx 0.45 \text{ kg}$ | | $1 \text{ cu ft} \approx 0.03 \text{ m}^3$ | 1 metric ton \approx 2205 lb | $1 \text{ ton} \approx 907.2 \text{ kg}$ | | $1 \text{ cu yd} \approx 0.8 \text{ m}^3$ | $1 \text{ kPa} \approx 0.145 \text{ psi}$ | $1 \text{ psi} \approx 6.895 \text{ kPa}$ | | | 1 foot $\approx 0.305 \text{ m}$
1 yard $\approx 0.91 \text{ m}$
1 mile $\approx 1.61 \text{ km}$
1 sq in $\approx 6.5 \text{ cm}^2$
1 sq ft $\approx 0.09 \text{ m}^2$
1 sq yd $\approx 0.8 \text{ m}^2$
1 acre $\approx 0.4 \text{ hectare}$
1 cu in $\approx 16.4 \text{ cm}^3$
1 cu ft $\approx 0.03 \text{ m}^3$ | 1 foot $\approx 0.305 \text{ m}$ 1 ml $\approx 0.07 \text{ tbsp}$ 1 yard $\approx 0.91 \text{ m}$ 1 l $\approx 33.8 \text{ fl oz}$ 1 mile $\approx 1.61 \text{ km}$ 1 l $\approx 4.2 \text{ cups}$ 1 sq in $\approx 6.5 \text{ cm}^2$ 1 l $\approx 2.1 \text{ pts}$ 1 sq ft $\approx 0.09 \text{ m}^2$ 1 l $\approx 1.06 \text{ qt}$ 1 sq yd $\approx 0.8 \text{ m}^2$ 1 l $\approx 0.26 \text{ gal}$ 1 acre $\approx 0.4 \text{ hectare}$ 1 gram $\approx 0.035 \text{ oz}$ 1 cu in $\approx 16.4 \text{ cm}^3$ 1 kg $\approx 2.2 \text{ lb}$ 1 cu ft $\approx 0.03 \text{ m}^3$ 1 metric ton $\approx 2205 \text{ lb}$ | ^{*}Adapted from Let's Measure Metric. A Teacher's Introduction to Metric Measurement. Division of Educational Redesign and Renewal, Ohio Department of Education, 65 S. Front Street, Columbus, OH 43215, 1975. ## CONVERSION TABLES ## SQUARE FEET TO SQUARE METRES | ft² | m ² | ${ m ft}^{2}$ | m ² | ft² | m ² | ft² | m^2 | |------|----------------|---------------|----------------|-----|----------------|-----|-------| | 1000 | 92.90 | 100 | 9.29 | 10 | 0.93 | 1 | 0.09 | | 2000 | 185.81 | 200 | 18.58 | 20 | 1.82 | 2 | 0.19 | | 3000 | 278.81 | 300 | 27.88 | 30 | 2.79 | 3 | 0.28 | | 4000 | 371.61 | 400 | 37.16 | 40 | 3.72 | 4 | 0.37 | | 5000 | 464.52 | 500 | 46.45 | 50 | 4.65 | 5 | 0.46 | | 6000 | 557.42 | 600 | 55.74 | 60 | 5.57 | 6 | 0.56 | | 7000 | 650.32 | 700 | 65.03 | 70 | 6.50 | 7 | 0.65 | | 8000 | 743.22 | 800 | 74.32 | 80 | 7.43 | 8 | 0.74 | | 9000 | 836.13 | 900 | 83.61 | 90 | 8.36 | 9 | 0.84 | ## SQUARE METRES TO SQUARE FEET | m ² | ft² | m ² | ft ² | m ² | ft ² | m ² | ft ² | |----------------|---------|----------------|-----------------|----------------|-----------------|----------------|-----------------| | 100 | 1076.39 | 10 | 107.64 | 1 | 10.76 | 0.1 | 1.08 | | 200 | 2152.78 | 20 | 215.28 | 2 | 21.53 | 0.2 | 2.15 | | 300 | 3229.17 | 30 | 322.92 | 3 | 32.29 | 0.3 | 3.23 | | 400 | 4305.56 | 40 | 430.56 | 4 | 43.06 | 0.4 | 4.31 | | 500 | 5381.96 | 50 | 538.20 | 5 | 53.82 | 0.5 | 5.38 | | 600 | 6458.35 | 60 | 645.83 | 6 | 64.58 | 0.6 | 6.46 | | 700 | 7534.74 | 70 | 753.47 | 7 | 75.35 | 0.7 | 7.53 | | 800 | 8611.13 | 80 | 861.11 | 8 | 86.11 | 0.8 | 8.61 | | 900 | 9687.52 | 90 | 968.75 | 9 | 96.87 | 0.9 | 9.69 | ## ANY WAY YOU WANT IT | 1. | You are working in a garden center, nursery, floral shop green- | |----|---| | | house, or in turf management. With the change to metric mea- | | | surement some of the things you order, sell or use are marked | | | only in metric units. You will need to be familiar with appro- | | | priate Customary equivalents in order to communicate with | | | customers and suppliers who use Customary units. To develop | | | your skill use the Table on Information Sheet 10 and give the | | | approximate metric quantity (both number and unit) for each | | | of the following Customary quantities. | | | Customary Quantity | Metric Quantity | |-----|-----------------------------|--| | a) | 2 lb. grass seed | et til det skale fra de statte et de se op de skilentide en de senden en sjelde en de de se op de se op de se | | b) | 4 qts. starter solution | | | c) | 3/4 in. pipe | er A. Eine Beitrongeman, die Schalen-Leit Edition von Zuffeld zu der verzeicht gestern vorzeilt, gestern wert der | | d) | 5 in, pot | 44-СС-1-4-бей в кот уство, или тупот него него может в состанов постанов постанов постанов постанов постанов п | | e) | 100 lb. fertilizer | entreben stade de organisation stades planeers reaction entrebelle de stade pareira tree de de agreer u | | f) | 18 in. plant | | | g) | two-gallon can | | | h) | 1 pint pesticide | | | i) | 1 fl. oz. spray concentrate | orge Matterwell (al. 6. colone) a cual him yeldy repyrate o
colon (al. colone) framework (al. f. d) of zero home yellowere (almost) and i | | j) | 3 miles | W. And Charles and Charles (S. A. De Marchelle Charles and | | k) | 1/2 in. pipe | | | 1) | 5 acre plot | | | m) | 2 ft. row space | And the state of t | | n) | 6 in. plant space | | | 0) | 1/4 in. seed depth | | | | | | | 2. | Use the | conversion | tables | from | Table 3 | to | convert t | the | following: | |----|---------|------------|--------|------|---------|----|-----------|-----|------------| |----|---------|------------|--------|------|---------|----|-----------|-----|------------| | | | | | | | | * | |-----|-----------------------|-----|----------------|-----|---------------------|---|------------------| | a) | 90 ft. ² | = | m ² | f) | 800 m ² | = | ft.2 | | b) | 30 ft. ² | = | m ² | g) | 1620 m ² | = | ft.2 | | c) | 2500 ft. ² | = 1 | m ² | h) | 498 m ² | = | ft. ² | | d) | 105 ft. ² | = | m ² | i) | 42 m^2 | = | ft. ² | | e) | 63 ft. ² | = | m ² | j) | 284 m² | = | ft. ² | | | | | | | | | | | k) | 876 ft ² | == | m ² | n) | 1159 m^2 | = 1 | ft.2 | |-----|-----------------------|----|----------------|----|--------------------|-----|------------------| | l) | 46 ft. ² | = | m ² | 0) | 490 m ² | = | ft.2 | | m) | 1413 ft. ² | = | m^2 | p) | 68 m ² | | ft. ² | 3. Complete the Sales Slip by converting the following items to metric quantities. The metric unit price is given for you. Determine the total price for each item. Complete all of the blanks on the Sales Slip (Date, Customer Name, Tax, Totals, etc.). | | Items Purchased | Metric Unit Price | |-----|--------------------|-------------------| | a) | 5 lb. grass seed | \$5.00 per kg | | b) | 40 lb. fertilizer | 3.00 per 10 kg | | c) | 1 qt. pesticide | 2.50 per litre | | d) | 100 ft. bean poles | 1.00 per m | | | | | | | SAL | ES SL | IP . | | |--|--|-------------------------------------|--|---| | | | | Date: | | | Sold To: | WALF ANAPOLOGY AND CO. COME TO PHILOSOPH PARADOCKET COME CONTROL OF THE COME | Paraghecerologists (NY 2014) agus 2 | E NO THE COUNTY PARKS TO ME TO BE A STREET OF THE O | mentalista in desarrates factours canada excessivativa della conservació della CARA | | Address: | | | | 1448-141000001 o 1400001 o 1400001 | | | | | tate: | | | Qty. | Item | | Unit | Total | | ere citi al PPI hace as substantes con consecutivos. | end Anni remental vi en vandat for de remental que que timb de 1844 Anni et de vi van de esta que de est | | | | | ************************************** | Bellinen er Mauri Green president dat de propositie de talen es com a Marie de Res | | | from School on the real brancher asked years and couple a service and the charge and school | | | | | | | | | | ** | | - | | | | | | | | Cash | Gerymens Bartonetic C (criminal Forest, 1994) in missicus rasecustus (1994) is see criminal (1994). | Sub | Total | | | Char | ge | Sales | s Tax | | | ☐ Bank | card | TOT | AT. | | #### SECTION A - One kilogram is about the mass of a: - [A] nickel - [B] apple seed - [C] basketball - [D] Volkswagen "Beetle" - 2. A square metre is about the area of: - [A] this sheet of paper - [B] a card table top - [C] a bedspread - [D] a postage stamp - 3. Application rates of dry fertilizers for lawns are normally given in: - [A] grams per square centimetre - [B] kilograms per square centimetre 4. The mass of bulk seeds is measured in: 5. The correct way to write twenty - [C] litres per square metre - [D] grams per square metre [A] cubic metres [B] millilitres [D] kilograms grams is: [A] 20 gms [B] 20 Gm. [C] 20 g. [D] 20 g [C] centimetres - 6. The correct way to write twelve thousand millimetres is: - [A] 12,000 mm. - [B] 12.000 mm - [C] 12 000mm - [D] 12 000 mm #### SECTION B - 7. A board 20 centimetres wide also has a width of: - [A] 2 000 millimetres - [B] 2 millimetres - [C] 200 millimetres - [D] 0.2 millimetre - 8. A 750 gram sack of potting medium is the same as: - [A] 0.75 kilogram - [B] 750 000 kilograms - [C] 7.5 kilograms - [D] 7 500 kilograms #### SECTION C - 9. For measuring hectares you would use a: - [A] container - [B] tape - [C] pressure gage - [D] scale - 10. For measuring kilopascals you would use a: - [A] scale - [B] container - [C] ruler - [D] pressure gage - 11. Estimate the length of the line segment below: - [A] 23 grams - [B] 6 centimetres - [C] 40 millimetres - [D] 14 pascals - 12. Estimate the length of the line segment below: - --- - [A] 10 millimetres - [B] 4 centimetres - [C] 4 pascals - [D] 23 milligrams - SECTION D - 13. The metric unit for liquid measure which replaces the fluid ounce is: - [A] litre - [B] cubic metre - [C] millilitre - D] gram - 14. The metric unit for liquid measure which replaces the gallon is: - [A] litre - [B] kilogram - [C] cubic metre - [D] millilitre Use this conversion table to answer questions 15 and 16. | m ² | ft ² | ft ² | m ² | | |----------------|-----------------|-----------------|----------------|--| | 1 | 10.76 | 1 | 0.09 | | | 2 | 21.53 | 2 | 0.18 | | | 3 | 32.29 | 3 | 0.28 | | | 4 | 43.06 | 4 | 0.37 | | | 5 | 53.81 | 5 | 0.46 | | | 6 | 64.58 | 6 | 0.56 | | | 7 | 75.35 | 7 | 0.65 | | | 8 | 86.11 | 8 | 0.74 | | | 9 | 96.87 | 9 | 0.84 | | | 10 | 107.64 | 10 | 0.93 | | - 15. The equivalent of 14 ft.² is: - [A] 37.16 m^2 - [B] 2.6 m^2 - $[C] 0.93 \text{ m}^2$ - [D] 1.3 m^2 - 16. The equivalent of 15 m^2 is: - [A] 8.73 ft.² - [B] 161.45 ft.² - [C] 973.06 ft.² - [D] 97.33 ft.² ## ANSWERS TO EXERCISES AND TEST ### EXERCISES 1 THRU 6 The answers depend on the items used for the activities. #### EXERCISE 7 Currently accepted metric units of measurement for each question are shown in Table 2. Standards in each occupation are being established now, so answers may vary. #### **EXERCISE 8** | a) | 2.6 cm | e) | 13.2 cm | |-----|---------|----|----------| | b) | 58.3 cm | f) | 80.2 cm | | c) | 9.4 cm | g) | 140.0 cm | | (b) | 68 0 cm | h) | 230 7 cm | ### EXERCISES 9 THRU 13 Tables are reproduced in total. Answers are in parentheses. ## Exercise 9 | metre
m | centimetre
cm | millimetre
mm | |------------|------------------|------------------| | 1 | 100 | 1 000 | | 2 | 200 | (2 000) | | 3 | (300) | (3 000) | | 9 | (900) | (9 000) | | (5) | (500) | 5 000 | | 74 | (7 400) | (74 000) | | 0.8 | 80 | (800) | | 0.6 | (60) | 600 | | (0.025) | 2.5 | 25 | | (0.148) | (14.8) | 148 | | (6.39) | 639 | (6 390) | ### Exercise 10 | millilitres
ml | litres
l | |-------------------|-------------| | 3 000 | 3 | | 6 000 | (6) | | (8 000) | 8 | | (14 000) | (14) | | (23 000) | 23 | | 300 | 0.3 | | 700 | (0.7) | | (900) | 0.9 | | 250 | (0.25) | | (470) | 0.47 | | 275 | (0.275) | ## Exercise 11 | litres
l | millilitres
ml | |-------------|-------------------| | 8 | 8 000 | | 5 | (5 000) | | 46 | (46 000) | | (32) | 32 000 | | 0.4 | (400) | | 0.53 | (530) | | (0.48) | 480 | ## Exercise 12 | grams
g | kilograms
kg | |------------|-----------------| | 4 000 | 4 | | 9 000 | (9) | | 23 000 | (23) | | (8 000) | 8 | | 300 | (0.3) | | 275 | (0.275) | #### Exercise 13 | kilograms
kg | grams
g | |-----------------|------------| | 7 | 7 000 | | 11 | (11 000) | | (25) | 25 000 | | 0.4 | (400) | | 0.63 | (630) | | (0.175) | 175 | ## Exercise 14 | -) | E | : \ | 0.000 | |-----|------------|-----|-----------| | / | 5 m | 1) | 2 000 mm | | b) | 0.25 litre | i) | 0.5 kg | | c) | 50 mm | k) | 0.5 litre | | d) | 2.5 kg | 1) | 500 kg | e) 12 cm m) 1 000 cm h) 500 ml ## EXERCISES 15 AND 16 The answers depend on the items used for the activities. ## EXERCISE 17 #### Part 1. | a) | 0.9 kg | i) | 29.6 ml | |-----|-------------|-----|---------------------| | b) | 3.8 litres | j) | 4.83 km | | c)
| 1.905 cm | k) | 1.27 cm | | d) | 12.7 cm | 1) | 2 ha | | e) | 45 kg | m) | 0.61 m | | f) | 45.72 cm | n) | $15.24~\mathrm{cm}$ | | g) | 7.58 litres | 0) | 0.635 cm | | h) | 0.47 litre | | | | | | | | #### Part 2. a) 8.36 m² b) 2.79 m² c) 232.26 m² $d) 9.75 \text{ m}^2$ e) 5.85 m^2 f) 8,611.13 ft.² g) 17,437.53 ft.² h) 5,360.42 ft.² i) 452.09 ft.² i) 3.056.95 ft.² k) 81.38 m^2 1) 4.28 m^2 m) 131.27 m^2 n) 12,475.36 ft.² o) 5,274.31 ft.² p) 731.94 ft.² ### Part 3. a) 2.25 kg; \$11.25 b) 18 kg; \$5.40 c) 0.95 litre; \$2.38 d) 30.5 m; \$30.50 ## TESTING METRIC ABILITIES | 1. | С | 9. | В | | |----|---|-----|---|--| | 2. | В | 10. | D | | | 3. | D | 11. | В | | | 4. | D | 12. | A | | | 5. | D | 13. | C | | | 6. | D | 14. | A | | | 7. | C | 15. | D | | | 8. | A | 16. | В | | | | | | | | ## SUGGESTED METRIC TOOLS AND DEVICES NEEDED TO COMPLETE MEASUREMENT TASKS IN EXERCISES 1 THROUGH 5 (* Optional) #### LINEAR Metre Sticks Rules, 30 cm Measuring Tapes, 150 cm *Height Measure *Metre Tape, 10 m *Trundle Wheel *Area Measuring Grid ### VOLUME/CAPACITY *Nesting Measures, set of 5, 50 ml - 1 000 ml Economy Beaker, set of 6, 50 ml - 1 000 ml Metric Spoon, set of 5, 1 ml - 25 ml Dry Measure, set of 3, 50, 125, 250 ml Plastic Litre Box Centimetre Cubes #### MASS Bathroom Scale *Kilogram Scale *Platform Spring Scale 5 kg Capacity 10 kg Capacity Balance Scale with 8-piece mass set *Spring Scale, 6 kg Capacity #### TEMPERATURE Celsius Thermometer ## SUGGESTED METRIC TOOLS AND DEVICES NEEDED TO COMPLETE OCCUPATIONAL MEASUREMENT TASKS In this occupation the tools needed to complete Exercises 6, 15, and 16 are indicated by "*." - * A. Assorted Metric Hardware—Hex nuts, washers, screws, cotter pins, etc. - * B. Drill Bits-Individual bits or sets, 1 mm to 13 mm range - C. Vernier Caliper—Pocket slide type, 120 mm range - D. Micrometer—Outside micrometer caliper, 0 mm to 25 mm range - ★ E. Feeler Gage—13 blades, 0.05 mm to 1 mm range - F. Metre Tape—50 or 100 m tape - G. Thermometers—Special purpose types such as a clinical thermometer - H. ¹ Temperature Devices—Indicators used for ovens, freezing/cooling systems, etc. - ★ I. Tools—Metric open end or box wrench sets, socket sets, hex key sets - ★ J. Weather Devices—Rain gage, barometer, humidity, wind velocity indicators - * K. Pressure Gages—Tire pressure, air, oxygen, hydraulic, fuel, etc. - L. ¹ Velocity—Direct reading or vane type meter - M. Road Map-State and city road maps - * N. Containers—Buckets, plastic containers, etc., for mixing and storing liquids - ★ O. Containers—Boxes, buckets, cans, etc., for mixing and storing dry ingredients Most of the above items may be obtained from local industrial, hardware, and school suppliers. Also, check with your school district's math and science departments and/or local industries for loan of their metric measurement devices. ¹ Measuring devices currently are not available. Substitute devices (i.e., thermometer) may be used to complete the measurement task. ## REFERENCES Let's Measure Metric. A Teacher's Introduction to Metric Measurement. Division of Educational Redesign and Renewal, Ohio Department of Education, 65 S. Front Street, Columbus, OH 43215, 1975, 80 pages; \$1.50, must include check to state treasurer. Activity-oriented introduction to the metric system designed for independent or group inservice education study. Introductory information about metric measurement; reproducible exercises apply metric concepts to common measurement situations; laboratory activities for individuals or groups. Templates for making metre tape, litre box, square centimetre grid. Measuring with Meters, or, How to Weigh a Gold Brick with a Meter-Stick. Metrication Institute of America, P.O. Box 236, Northfield, IL 60093, 1974, 23 min., 16 mm, sound, color; \$310.00 purchase, \$31.00 rental. Film presents units for length, area, volume and mass, relating each unit to many common objects. Screen overprints show correct use of metric symbols and ease of metric calculations. Relationships among metric measures of length, area, volume, and mass are illustrated in interesting and unforgettable ways. Metric Education, An Annotated Bibliography for Vocational, Technical and Adult Education. Product Utilization, The Center for Vocational Education, The Ohio State University, Columbus, OH 43210, 1974, 149 pages; \$10.00. Comprehensive bibliography of instructional materials, reference materials and resource list for secondary, post-secondary, teacher education, and adult basic education. Instructional materials indexed by 15 occupational clusters, types of materials, and educational level. Metric Education, A Position Paper for Vocational, Technical and Adult Education. Product Utilization, The Center for Vocational Education, The Ohio State University, Columbus, OH 43210, 1975, 46 pages; \$3.00. Paper for teachers, curriculum developers, and administrators in vocational, technical and adult education. Covers issues in metric education, the metric system, the impact of metrication on vocational and technical education, implications of metric instruction for adult basic education, and curriculum and instructional strategies. Metrics in Career Education. Lindbeck, John R., Charles A. Bennett Company, Inc., 809 W. Detweiller Drive, Peoria, IL 61614, 1975, 103 pages, \$3.60, paper; \$2.70 quantity school purchase. Presents metric units and notation in a well-illustrated manner. Individual chapters on metrics in drafting, metalworking, woodworking, power and energy, graphic arts, and home economics. Chapters followed by several learning activities for student use. Appendix includes conversion tables and charts. The Metric System for Farmers. Publication 1946, 1973, 19 panel fold-out. Information Division, Canada Department of Agriculture, Ottawa KIA 0C7, Ontario, Canada. Government brochure, describes metric units for length, area, volume and capacity, mass (weight), and crop yields. Conversion factors and tables of equivalents for common household measures. Graphic illustrations relate metric units and quantities to agricultural tasks and settings. #### METRIC SUPPLIERS Brown & Sharpe Manufacturing Co., Precision Park, North Kingstown, RI 02852 Industrial quality micrometers, steel rules, screw pitch and thickness gages, squares, depth gages, calipers, dial indicators, conversion charts and guides. Dick Blick Company, P.O. Box 1267, Galesburg, IL 61401 Instructional quality rules, tapes, metre sticks, cubes, height measures, trundle wheels, measuring cups and spoons, personal scales, gram/kilogram scales, feeler and depth gages, beakers, thermometers, kits and other aids. Millimeter Industrial Supply Corp., 162 Central Avenue, Farmingdale, L. I., NY 11735 Industrial fasteners, taps, dies, reamers, drills, wrenches, rings, bushings, calipers, steel rules and tapes, feeler gages. Ohaus Scale Corporation, 29 Hanover Road, Florham Park, NJ 07932 Precision balances and scales, plastic calipers and stackable gram cubes for beginners. #### INFORMATION SOURCES American National Metric Council, 1625 Massachusetts Avenue, N.W., Washington, D C 20036 Charts, posters, reports and pamphlets, *Metric Reporter* newsletter. National metric coordinating council representing industry, government, education, professional and trade organizations. American Society of Agricultural Engineers, Metric Policy Subcommittee, St. Joseph, Michigan. Information on the metric system, ASAE standards and engineering practices. National Bureau of Standards, Office of Information Activities, U.S. Department of Commerce, Washington, D C 20234. Free and inexpensive metric charts and publications, also lends films and displays.