Quantum Technologies for Secure Wide-Area Time Distribution

Phil Evans, Ph.D.

evanspg@ornl.gov

Quantum Information Sciences Group

Oak Ridge National Laboratory

IEEE/NIST Timing Challenges in the Smart Grid Workshop

Gaithersburg MD Oct 26th 2016

Outline

- 1. Motivation
- 2. The weird world of quantum mechanics
 - Uncertainty
 - Entanglement
- 3. Technologies
 - (Truly!) random numbers
 - Secure communications
- 4. Applications to time distribution
 - Over optical fiber
 - Over the wire
 - Over the air
- 5. Summary & Outlook

How can we distribute time from a trusted source in a secure, authenticated and resilient manner?

- Applications
 - Power & Energy
 - Transportation
 - Cyber security
 - Financial

Quantum Mechanics

- Physical laws describing behavior of 'small' things
 - Subatomic particles \rightarrow clusters of atoms \rightarrow MEMS devices
 - Photons (e.g. visible light, RF, X-rays)
 - Fields and vacuum
- Probabilities vs. absolutes
 - QM deals with expectation values & probability functions
 - The wavefunction Ψ completely describes the system
 - Want to calculate something? Apply the right operator!
- Consequences
 - Discrete states & energy levels (no continuums)
 - Uncertainty principles
 - Other 'odd' behaviors

Quantum Mechanics (2)

Heisenberg's uncertainty relation

Increased measurement accuracy of one property implies less accuracy of the conjugate

Quantum objects exist in a superposition of **ALL** allowed states.... ... until a measurement is made

Superposition

"Spooky action at a distance" Quantum systems with two (or more) particles are described with a single wavefunction.

Entanglement

- Single photon source
 - Emission time of photons is random
- Reflection OR transmission at the beam splitter
- Detectors register single photon events
- Output is truly random bit stream
 - … except for biases

Secure Communications

- *Alice* prepares single photon states
- Bob detects single photons
- Eve cannot measure and prepare Alice's state
 - No cloning allowed the uncertainty principle in action
 - Introduces errors with her measurements

Secure Communications 2

- Quantum Key Distribution (QKD)
 - Quantum channel: Alice prepares, Bob measures
 - Classical channel: reconciliation, error correction
 - BB84 protocol
- Provably secure method of distributing keys
 - Passwords for symmetric key encryption
 - Correlated random numbers for one-time pad

One-Way Time Distribution is Insecure

 Station B uses features to determine when Station A transmitted the waveform

Station A

10:00

• Station B takes the propagation delay into account

National Laboratory

One-Way Time Distribution is Insecure 2

 Station B takes the propagation delay into account

Conditions for Secure Time Distribution

- 1. Propagation delay between A and B must be known
- 2. The path taken by the timing signal must be irreducible.
- 3. Both A and B must inject unpredictability into their transmitted signals.
- 4. Time delay between B receiving message and replying must be known.

How Quantum Technologies Can Help

Use random numbers generated and distributed with QRNGs and QKD to encrypt time stamps with one-time pad

- Secure time distribution use cases:
 - 1. ... over optical fiber
 - 2. ... over the wire
 - 3. ... over the air

Secure Time Distribution over Optical Fiber

- Availability of fiber will allow full QKD solution
- Multi-party QKD network
 - Pairs of users establish key
 - Slaves establish their own keys with master
- Low cost slave nodes are not full QKD stations
 - Photons not generated nor detected
- Funded by DOE CEDS
 - Lab research project recently concluded
 - Demonstrated with utility partner
 - Technology transition to industry
 - Industry project just started

Secure Time Distribution over the Wire

- Using IEEE 1588
 (Precision Time Protocol)
- Authority generates key material using QRNGs
 - Pre-loaded onto devices
 - Distributes to users
- 1588 messaging uses key
 - All communications are secured
 - Minimize & account for overhead
- Modify to satisfy 2-way security
- What happens when keys are used up or compromised?

Secure Time over the Air

- System of QKD-connected beacons
 - Key & time distributed to all beacons securely
 - Each beacon authenticates others' transmissions

- Timing Authentication Secured by Quantum Correlations (TASQC)
 - Currently funded by DOE CEDS
 - Proof of principle demo at PNNL Cyber-RF test bed
 - Utility demo coming in 2017

15

Secure Time over the Air

- Protocol:
 - Alice (master) encrypts and broadcasts time
 - Bob (verifier) receives & verifies Alice, broadcasts key
 - PMU (slave):
 - Encrypted time received at local clock t_1
 - Decryption key received at local clock t_2
 - Time message decryption, correction for TOF, local clock correction
 - PMU responds with quantum-seeded message
 - Alice & Bob receive acknowledgement and confirm
- Benefits:
 - Full 2-way secure time distribution
 - Utility / operator owns the system

Implemented with QKD systems & SDR

Summary & Outlook

- Secure time distribution
 - GPS is not enough
 - Terrestrial solutions operated by stakeholders or trusted parties
 - Requires 2-way communication to prevent attacks
 - Master(s) to broadcast, slave(s) to acknowledge
 - Need store of shared unpredictability
- Quantum technologies
 - Leveraging true randomness for one-time pad
 - Leveraging provably secure communications
- Demonstrated use cases
- Increased quantum adoption in cyber systems
 - critical infrastructure to follow

Questions?

