## Low Cost Development Testbeds for Implementing the Digital Thread

Russ Waddell, AMT – The Association For Manufacturing Technology

Roby Lynn, Georgia Tech

Kyle Saleeby, Georgia Tech

Stephen LaMarca, AMT – The Association For Manufacturing Technology

Shaurabh K. Singh, AMT – The Association For Manufacturing Technology

## Background



# Digital Thread is great

## Digital Thread is (going to be) great

## 1. Research platforms are helping fill gaps.

## PocketNC desktop 5-axis is cheap\*.

## **Research Platforms**



# Research platforms are helping fill gaps.

NIST

AMT

Georgia Tech

## NIST Smart Mfg Systems Testbed



## AMT Pop Up Shop



http://blognewsweekly.com/2018/07/08/popup-shop-designs/



http://blognewsweekly.com/2018/07/08/popup-shop-designs/



https://www.blocalpdx.com/news-feed/b-corp-store-opens-at-lloyd-center



## Georgia Tech

### Typical CAM $\rightarrow$ CNC System



[3] R. Lynn, M. Sati, M. Helu, T. Kurfess. The State of Integrated CAM/CNC Control Systems: Prior Developments and the Path Towards a Smarter CNC (in Preparation). SME Journal of Manufacturing Systems, 2019.

### **Alternative Data Flow Standards**

- Feedback: MTConnect, OPC-UA, proprietary APIs
  - Low frequency feedback: typically less than 100s of Hz for some data items
  - Limitations on flow direction
  - Okuma THINC, Mazak Smooth API
- <u>Control</u>: STEP-NC
  - Object-oriented machine tool programming
  - Interoperability between different types of machine tools
  - Online trajectory planning
- NC.js
  - Realtime machining simulation of a STEP-NC program using MTConnect data



## Direct Servo Control from Voxel-Based CAM: Research Objectives



- Framework for a <u>smarter and more integrated</u> realtime machine tool control system
  - Software and hardware, experimental motion profiles, performance analysis

## Direct Servo Control from Voxel-Based CAM: System Architecture



#### Realtime Machine Control System

[9] R. Lynn, M. Sati, T. Tucker, J. Rossignac, C. Saldana, T. Kurfess. Realization of the 5-Axis Machine Tool Digital Twin Using Direct Servo Control from CAM. NIST Model Based Enterprise (MBE) Summit, 2018.

## Future Factory Software Architecture & Supporting Applications

**Boeing PI: Al Salour** 

Ga. Tech PIs: Dr. Tom Kurfess; Andy Dugenske

Research Team: Daniel Newman, Kyle Saleeby

- Digital Architecture Implementation
- PocketNC Connect Desktop Implementation
- Live Machine Monitoring Testbed

## Digital Architecture Implementation

- MQTT machine monitoring architecture
- JSON data structure
- Many-to-many communication pattern
- Robust and flexible for diverse machines and processes

## Live Machine Monitoring Testbed

- Three OKUMA Genos machines connected and monitored
- 800 Parts machined each semester via ME2110: Creative Decision and Design
- Data integration with Digital Twin modeling efforts

## PocketNC

\*Cheap = Total cost under \$10,000 for a reasonable facsimile of a manufacturing cell

## PocketNC desktop 5-axis mill

Georgia Tech (x2)

AMT

Tec De Monterrey

## Georgia Tech Roby Lynn

### Research Machine Tool: Hardware

- VMC conversion of PocketNC
  - Expandability, \$50 BBB
  - Axis encoders
  - Closed-loop spindle control
  - Power
    distribution





| CAM-Controlled PocketNC |  |       |  |  |
|-------------------------|--|-------|--|--|
| Pocket NC (V1)          |  | 4,000 |  |  |
| Frame                   |  | 700   |  |  |
| Electronics             |  | 300   |  |  |
| Sensors                 |  | 600   |  |  |
| Control PC              |  | 2,000 |  |  |

| TOTAL, Directly-Controlled | \$7,600 |  |
|----------------------------|---------|--|
| Desktop CNC                |         |  |

## Georgia Tech Daniel Newman Kyle Saleeby

## PocketNC Connect Desktop Implementation

- PocketNC 5-axis desktop CNC machine
- Full in-house implementation without cloud connectivity
- Secure for classified facilities
- Increased sample frequency and higher data quality

## PocketNC Connect Desktop Implementation



## AMT Pop Up Shop

| AMT Pop Up Shop, current scope |         |  |
|--------------------------------|---------|--|
| Pocket NC (V2)                 | 5,500   |  |
| Pocket NC enclosure            | 549     |  |
| Vise                           | 60      |  |
| Travel case                    | 299     |  |
| Raspberry Pi (bundle)          | 85      |  |
| Laptop                         | 600     |  |
| TOTAL, Desktop CNC             | \$7,093 |  |

| AMT Pop Up Shop, future scope            |          |  |  |
|------------------------------------------|----------|--|--|
| Ufactory xArm                            | 7,000    |  |  |
| xArm gripper                             | 1,500    |  |  |
| TOTAL, Desktop CNC + Desktop Robotic Arm | \$15,593 |  |  |

## CONCLUSIONS

**Researchers should:** 

Review existing testbed models Publish system architectures Share findings with suppliers Bridge gaps from lab to shop

See also: research platform, manufacturing system architecture, low-cost hardware

Russ Waddell rwaddell@amtonline.org

Standards developers should pursue:

Openness Modularity Pluggable architectures Harmonization

Russ Waddell rwaddell@amtonline.org