Toward Understanding of Metastability in Cellular
CDMA Networks: Emergence and Implications for
Performance.

Daniel Genin Vladimir Marbukh
NIST, Gaithersburg, MD Senior Member, IEEE,
Email: dgenin@nist.gov NIST, Gaithersburg, MD

Email: marbukh@nist.gov

Abstract—We investigate the metastable behavior in a model process can be approximated by another Markov process
of a cellular CDMA network with multiple service classes. While with a smaller phase space, whose states correspond to the
the Markov model provides an accurate *microscopic” model — 5,6ve supsets and are the metastable states of the original

of the network behavior, the dimension of this model grows Mark | i thi that the ti .
exponentially with the number of cells precluding solution of the arkov process. In practice, this means that the ime series

corresponding Kolmogorov equations. Dimension of the mean- Of the system with metastable states exhibits long periods
field approximation model grows only linearly with the number  of apparently steady state behavior with rapid transitions
of cells making this approximation computationally tractable. petween. Furthermore, due to asymmetry in the probability
Through numerical analysis we show that the equilibrium man- mass distribution between the metastable states, the fieTe s

ifold of the mean-field model develops “folds” under increasing . th t likelv state i tallv | d® th
network load which give rise to multiple stable equilibria. These ' 1€ MOStikely state IS exponentially long compare

multiple equilibria can be interpreted as describing network’s ~time spent in other metastable states.
metastable states. By comparing simulation data with numerical ~ We build on the results of [1] by using the mean-field

computations we show that mean-field approximation can be used approximation (already developed in [2]) and computer simu
to predict equilibrium states of a realistic network. We construct a lations to begin piecing together the structure of the misdel

sample phase diagram showing distribution of metastable regions . o . L
in thr?e u%er load ?)Iane, derive a formula for the likelihood of phase space with regard to metastability and the implioatio

successful service completion for metastable states and discus§f metastability for the network's performance. By using
performance characteristics of the network. numerical computations we construct a generic phase space

Index Terms—cellular network, performance, mean-field ap- diagram for the mean-field approximation model. The ad-
proximation, metastability. vantage of the phase diagram is that it allows to see at a
glance how parameter regions corresponding to metastable
regimes are distributed in the parameter space and aredelat

Following [2] we consider a Markov model of a cellularto the parameters of the network. It also provides a kind of a
CDMA network with multiple user service classes. The modélopographic” map which the network operator can use torstee
is applicable not only to cellular networks but to any netkvorthe network in to the desirable state or away from undesrabl
with multiple service classes, and migrating users. Ullygoi  states. Mean-field approximation also permits computation
such networks makes their optimal design and control a topghe metastable states with considerable precision, whidtes
of great interest. estimation of the quality of service possible for metastabl

In [2] it was proved that for certain parameter values th&tates. We derive a general formula for quality of service
Markov model exhibits metastability as the number of cellsnd give a simple expression for it in the special case of
in the network approaches infinity. Simulations performed ithe homogeneous network traffic. All this suggests that with
[1] confirmed that metastability can appear in realistic rlsd sufficient understanding of metastability and an appropria
of CDMA networks with two service classes and as few asdmission control policy, capable of stabilizing metaktab
49 cells. Understanding which network parameters cortibistates, metastable states may be practical in network toera
strongly to metastability and how metastable states depand The paper is organized as follows. Section Il describes the
these parameters may help in operation and design of compbexformance model and analysis. We briefly introduce the
service networks such as CDMA cellular networks. “microscopic” Markov model and the corresponding mean-

Metastability is strong heterogeneity in the distributioh field approximation broadly following [2], and derive an
mass of the stationary probability distribution. If thetgiaary expression for quality of service. Section Il presentsittson
distribution is concentrated on a few relatively small diisf the structure of the phase diagram and data from simulations
subsets of the phase space a realization of the Markov grocesting the predictions of the mean-field approximatiorc-Se
will be found most of the time in one of the states containgibn IV is devoted to performance analysis in terms of qualit
within the heavily weighted subsets, with the rest of thesghaof service. We conclude with the summary of our findings and
space visited only occasionally. This means that the Markalirections for future research in Section V.

I. INTRODUCTION



Il. NETWORK PERFORMANCE MODEL state Kolmogorov equations:

In Subsection II-A we briefly introduce the Markov model’ (X) Z (A” * X;YX”' (ks + F‘“”)
proposed in [2]. Our model differs somewhat from the origina °<

in that the network parameters are permitted to vary across = Y 2 P(X — 1)\ @
cells and migration occurs only between adjacent cellsulm S jeJ s€S
section 1I-B we derive the corresponding mean-field approx-
imation and the fixed-point equations for the homogeneous + 2 > P(X + 1;;)(Xe; +1) [ s + D Foji(X)
network case. jeJ s€S i

+ Z Z ZP(X + 1y — 16) (X5 + 1A (X — 1)

jeJ i seS

supplemented with normalization condition ,, P(X) = 1.
In (2) the vectorl,; = (0s,0:5 : h € S,j € J), whered,;

is the Kronecker symbai;; = 1 if i = j and O otherwise and
Consider a network with a set of cells, representing cell

A. Markov Model

towers, J and S service classes with varying resource de- .

. . . o Vsji if X + 197 13]‘ ¢ X
mands. The service classes correspond to users usingediffer Fsji(X) = 0 othorwise
services e.g. voice and video [1]. Cell€ J has capacity )

C;, while each user of service class= 1,...,S requires Ji(X) = { Vsji i X+ 1 —_L;j e
capacity b, and has an exponentially distributed “lifespan” ‘ 0 otherwise

(call duration) 7,, with average7; = 1/u,. Numbers of Iy, = Z%ji

users at all cells of the network are described by a vector i

X =Xs,s=1,...,8j=1,...,J), where X;; is the
number of users of service classt thejth cell. The feasible We point out several obvious reductions of the above model

region for vectorX is given b . .
9 9 y o If v5; = 0 the network consists of independent queues

and the equilibrium probability distribution is &-fold
S product of the probability distribution for a finite capacit
r=1Jx. stij <Cij=1,...,J 1) muIti—service.qugut_a. . _
par « If cell capacity is infinite the entire network acts as a
single infinite server queue since no user is ever rejected.

This assumption describes Frequency Division Multiple Ac- .
cess (FDMA) network. In the case of Code Division Multipld3. Mean-Field Model

Access (CDMA) assumption (1) can be justified if inter-cell ) o
interference is small. The Markov model gives a full cell-by-cell description

. of the network dynamics but the number of equations is
We assume that new users of class 1,..., S originate at 1, |5rge to compute the stationary distribution even for
the cellj € J according to a Poisson process of raig. Each 5 rejatively small network, due to the exponential growth
user in the network performs a random walk over the set 8f the state space with the number of cells The mean-
cells /. The random walk is described by a Markov procesg,|q anproximation provides a more tractable descriptién o
§(1) with a set o_f states/, COﬂtIhU.OL.IS tlmg a”?' transition ¢ equilibrium distribution. In mean-field approximatitime
rates between_ adjacent network cellg € J, i # J equal FO influence of thespecific state of the network on a given
7sij- FOr consistency we set;; =0 andysi; =0, if i andj o ig replaced by the influence of thaveraged network
are not adjacent in the ne_twork. .If an arriving user takes t'%‘?ate with respect to a hypothesised equilibrium prokigbili
cell out of the feasible region he is ejected from the networliqyintion. The probability distributions of individuaells

Time evolution of the network state vectdf is described are further assumed to be independent and the stationary
by a Markov process with state spadé Under the above probability distribution for the network takes on a prodiaem
assumptions evolution of the vectdf(t) = (Xq(t)) is a P = [[;., P(X;,X_;)whereX; = (X,s = 1,...,5)
time-homogeneous Markov process with a finite number & the vector describing the number of users of each class
states|X|. The resulting process is ergodic provided thairesent at the cell € J and X_; is the expected state of the
arrival, migration and service rates are non-zero and henuetwork without thej-th cell with respect taP. In passing to
possesses a unique invariant probability distributféiX) = the mean-field approximation we are making an assumption
lim; ., P(t, X), which is uniquely determined by the steadythat the system can be approximated in this way, which we



confirm later with simulations. We derive an expression for the likelihood of successful
_ _ service completion for the-th service class us&p,; in terms
Pj(Xj, X—j) Z (ASJ' + A (X) + X (s + Fsi)) ~ of the blocking probabilitiesB,;, where B, stands for the

€9 likelihood that thej-th cell will block an arriving user of the
ZPj(Xj + 1)(Xs; + 1) (us + Tj) (3) corresponding class3,; can in turn be expressed in terms of
s€S X4, which can be computed numerically from the mean-field
+ ZPj(Xj —1,) (A\sj + As (X)) equations (3), ~
seS st =1- ij/st (5)
whereA;(X) = B[Xi7s;] wherepy; = (Asj + Agj (X))/(1s + ).

The number of equations is now proportional to the numberLet the probability of successful service completion for an
of cellsJ in the network but the equations are nonlinear and seth service class user originating at tlieh cell be denoted
impossible to solve explicitly. Non-linearity of the metiald by @Q,; then
equations permits multiple solutions, or multiple equiliin
probability distributions. This, however, does not codicathe Qsj = Z Plcall unblocked on w]Plw]
ergodicity of the original Markov model, rather it indicate wesy;
that the stationary distribution for the full Markov model i where (2; is the collection of all paths through the network
a combination of equilibrium distributions of the meandiel based atj, w = {j,1,72,73,---,Jx}, 51 € J. Because the
approximation. blocking probabilities of cells are independent (by meaidfi

AssumingP; = ( are all identical, as might be expected foassumption) the probability of navigating a given path ssse
a homogeneous network, we can write down jtistquations fully is equal to the probability of success inindependent

for X,, the expected number of users of clasger cell. trials with randomly distributed times. It can be shown that
X, = Eg[X, 4 “l (1= Boo) TT¥ ! Yoo
Q[ ] ( ) QéJ _ Z 7,:0( - |w7,|)Hl:0 i i Wi41 (6)
where Eg[] is expectation with respect to the equilibrium weQ; ps TLiZo s + Dow,

probability distribution@ = @ 5. The later can be computed
explicitly as the equilibrium distribution for a single ntiul
service class finite capacity queue because of its revhtgibi

In a homogeneous network, i.e. one in which all the rates
As; and v,;; are equal, the equation (6) simplifies further if
we assume in addition that equilibrium probability distition

[3] is also homogeneous. In this case tBg; = B, and the
o L ps(Xg)Xe probability of successful completion is
QRx.(X) = Z(X,) 1M
HSXS' Q _MS(I_BS)
_ J(X )X s = ———".
Xex I, X! The last formula can be rewritten in terms of the easily
wherep, are mean aggregate loads including intra- as well g(s)mputable average number Of users per &gl
extra-cell arrivals X,
_ Qs = \ 5 (7)
(X = As + T X, s/ b
Pslts) = s + T which is can be understood as the conservation law: the

average number of customers in the system is equal to the
load times the proportion of the customers servicHuls, in

Performance of a service network can be quantified inyge homogeneous case in equilibrium each cell behaves as an
number of different ways. The operator of the network is moglg|ated queue.

likely to be interested in maximizing the pay-off, which may

C. Quality of service

be reasonably expected to be a linear function of the average III. M ETASTABILITY
number of users in the system In this section we construct a phase diagram for the special
- case of the homogeneous network with two service classes by
o(p) = Z Zij(p)ps solving the mean-field equations (4) over a grid of parameter

sesjes values. Solutions of the mean-field equations yield exactly

wherep = {ps; : s € S,j € J} andp, is the profit per the potential metastable equilibria of the network. Intdap
user of classs who is successfully serviced. For simplicitying between the solutions on the grid yields a slice of the
we assume that incomplete service brings zero revenue.eguilibrium manifold of the system. That is, the manifold of
measure of performance which is likely to be of concern tmetastable equilibria parametrized by the network pararset
network’s customers, and so again, to its operator, is tyualsuch as arrival, departure and migration rates, etc. Simee t
of service, i.e. the likelihood of successful service cagtiph, network is homogeneous and the individual cell distritbngio
Qs are assumed to be identical, an equilibrium (as well as any



other state) of the network is described by a pair of num-
bers corresponding to the expected number of users of each
service class per cell. The full equilibrium manifold thussh
dimension twice that of the parameter space which is hard to
visualize so instead we plot its projection on to one of the ¢
service classes. 4

The parameters of the model can be roughly subdivided into
two groups — fixed and variable parameters. Fixed parameters 24
such as cell capacity, service class demands etc. describe
internal and relatively static properties of the network tBe
other hand, variable parameters, e.g. traffic load, vary ove
time and can to some extent be regulated by the operator.
Since in practice network behavior under a shifting traffic
load is of most immediate concern, we choose the service
class loads as axes of the phase diagram, i.e. loads from (@)
the two service classes as fractions of the total cell capaci
p1 = /\1/#1 X bl/C andpg = /\Q/MQ X bg/C

Figure 1(a) and (b) shows the metastable equilibrium mani-
fold for the first service class. The reason two plots are eged
to describe this manifold is that it is not a single valued
function of the chosen parameters and so can take on multiple4
values at a single point. Plot (a) correspond to the upper
boundary and plot (b) to the lower boundary of the convex
hull of this manifold.

In order to understand the structure of the equilibrium
manifold it is helpful to note that the equilibrium convesge
that of an infinite server queue in the limit &f /., — 0. That
is, the network system has a unique equilibrium provided the
migration is slow relative to the lifespan of the users and/o
the load is close to zerd.his is reflected by the single single-
valuedness of the equilibrium manifold (Fig. 1(a) and (lmten i
that the origin is the far right bottom corner). As the load
on the system increases the equilibrium manifold develops a
fold. Under the vertical projection the fold covers everyrnpo
of the parameter space below thrice, yielding three passibl
metastable equilibrium states for the same set of parametell's i
values. The upper and lower branches, plots (a) and (b) in
Figure 1 respectively, of the fold correspond to the mebdsta
equilibrium states and the middle branch (not shown) to the
unstable equilibrium state. The phase diagram in Figure 1 (c 1o
was obtained by averaging the two plots (a) and (b), which
colors the metastable regions in shades intermediate batwe
those of the neighboring phases. Boundaries of the folderund
projection (outlined in black) divide the parameter spate i
regions with distinct equilibria or phases. Between thases|
(corresponding to regions below the folds) neighboringsplka
coexist giving rise to metastability. For unusually higlads
folds can pile up on top of each other producing regions with
three or more metastable states. 00

Computer simulations of the x 7 cell network arranged in '
a hexagonal lattice with periodic boundary conditions comfi
the qu?‘“tat.lve ar.]d quantitative correctness pf the meeld-f Fig. 1. (a) & (b) Convex hulls of the lower and upper branchespectively of
approximation. Figure 2 shows plots of the simulated av@rage equilibrium manifold for service class 1. (c) Phase diegconstructed
numbers of users per cell at two points of the parameter spageprojecting the equilibrium manifold by averaging. Regiowith phase
— one non-metastable and one metastable. Figure 2(a) gif@&istence are outlined in black(= 64, by = 1, by = 18,y = 1,
the time series for a non-metastable (according to meam-fiéf ~ > 7 =42 =1)
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by steering the network toward the maximum ¢f The
time-dependent problem of revenue maximization is thus to
find p* = {p;; : s € S,j € J} solving the constrained
maximization problem

but it can also simultaneously be used to maximize revenue

Maximize ¢(r) (8)
Constraint : r5; < psj, ZTSJ <(1+405)C;Vjed

S

(b) wherep,; are the current traffic loads, awg is the maximum
permitted overload margin for cejl
Fig. 2. Network parameters are as in Figure lp{a)= 0.5, p> = 1.0 Figure 4(a) shows the level sets offor a spatially homo-
(b)p1 = 0.5, p2 = 1.35. The horizontal lines indicate equilibrium states . . .
predicted by the mean-field approximation. geneous network with two service classes, and with= 1
and p» = 20 (the network parameters are as in Figure 1).
Because, the equilibrium manifold is multivalued as a fiorct
approximation) parameter vector. As expected the netwd?k p1 and pa, ¢ also takes multiple values in the regions
remained in the steady state predicted by the mean-figlith coexisting phases. The figure thus contains two sets of
approximation for the duration of the simulation. Figur®@)2( level curves corresponding to the upper and lower branches o
shows the time series for a metastable (according to medhe equilibrium manifold, which coincide on the single phas
field approximation) parameter vector. Here the networkispgegion. The next figure (Figure 4(b)) shows the restrictibn o
substantial amounts of time in the two metastable statége graph of to the linep; +po = 1.5, which is the boundary
predicted by the mean-field approximation, with rapid trar®f the constraint region ip; andp, are greater than 1.5 and
sitions between the two states typical of metastable syster; = 0.5. From Figure 4(a) it is clear that the maximum of
While no substitute for a regular validation procedure, aépe the optimization problem (8) will be achieved along thiselin
comparisons against simulation runs for different paramet Notice that while the extremes in Figure 4(b), correspogdin
vectors yielded the same good agreement with the mean-fitidthe exclusion of one or the other of the service classes,
approximation. are global maxima of the revenue function they may not
We note that analysis of simulation data also confirms tii¢ acceptable, since they correspond to exceptionally poor
correctness of formula (7). Figure 3 shows the fraction ef tiguality of service for the excluded service class. Recait th
users successfully serviced in a sliding 50 time unit windo®y equation (7) likelihood of successful service is projoordl
and the mean-field predicted values of the service completitp the average number of service class users in the system.
probabilitiesq ;. One crucial observation that can be gleaned from Figure
4(b) is that some local solutions of the above optimization
V. IMPLICATIONS OF METASTABILITY FOR PERFORMANCE problem may be “cliff hangers’, in the sense that they are
The operator can control the load of each service class located close to the phase transition boundary, where d smal
the network through admission control. Resource resevatiperturbation in the network state can precipitate a dramati
method of admission control has been shown to be effectigieop in revenue. Since in practice the network state canmot b
in keeping the network out of the multi-phase regions in [1lperfectly controlled and small fluctuations are inevitaltree
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Fig. 4. (a) Level curves oty for p; = 1 andpa2 = 20 and network
parameters as in Figure 1 (Sawtooth edges are numerical cts}ifab)

Restriction of the revenue manifold to; + p2 = 1.5 with the z-axis

showing the fraction of class 1 users (the dotted portioricatds values
for the unstable equilibrium not observed in practice). lizasgraph shows
the convolution of the upper branch of the revenue manifolth wiGaussian
kernelg(z) = 1/v/2me="/2 simulating small deviations

transitions, versus their likelihood must be carried outrider
to determine the true revenue maximizing states.

V. CONCLUSION

We used the mean-field approximation to derive equations
for the metastable states of a large-scale loss networkgUsi
numerical solutions of these equations we constructed sepha
diagram for a homogeneous network with two service classes
and verified its correctness by running computer simulation
for representative parameter values. We observed thastaeta
bility arises through a folding of the equilibrium manifold
when the traffic load approaches network capacity; at higher
traffic loads the load-space is divided into regions withidét
phases that overlap along wedge-shaped metastable regions
Mean-field approximation was then used to derive a formula
describing likelihood of successful service and this tos wa
verified by computer simulations. Finally, we observe that
states maximizing a linear revenue function may have rather
small stability margins, leading to decreased profits due to
undesirable phase transitions caused by inevitable chance
fluctuations in the network state.

Metastability could potentially be harnessed and put tadgoo
use if a reliable way to compute stability margins of the
metastable equilibria is discovered. Call admission antr
could then be used to maintain the network in a desirable
metastable state whose quality of service can be estimated
using equation (6). Further research is, also, necessary to
understand the relationship of inhomogeneity in user traffi
and network parameters, and of network topology to stabilit
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expected revenue of a “cliff hanger” state may be substintia 1994
smaller than predicted by the simple minded model. A more
accurate picture of revenue may be given by convolving the
above graph with a Gaussian kernel, simulating small devi-

ations from the equilibrium. The maxima ¢f shift, relative

to the original graph, when small deviations are introduced

(dashed graph in Figure 4(b)).

For practical applications this means that stability masgi

of revenue maximizing states must be considered carefully
when considering optimal control of such service networks.
Admission control may not be of much help in improving

stability margins significantly because transitions betve
phases may occur due to a sudden mass exodus of users
from the system (perhaps through cell failure) just as well
as by a sudden surge of users into the system. Furthermore,
once the network enters a new phase it may be difficult to
return it to the previous one without at least a temporary
decrease in the quality of service. A careful analysis oénexe

loss due to system “resets”, following such unwanted phase



