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Abstract—We investigate the metastable behavior in a model
of a cellular CDMA network with multiple service classes. While
the Markov model provides an accurate “microscopic” model
of the network behavior, the dimension of this model grows
exponentially with the number of cells precluding solution of the
corresponding Kolmogorov equations. Dimension of the mean-
field approximation model grows only linearly with the number
of cells making this approximation computationally tractable.
Through numerical analysis we show that the equilibrium man-
ifold of the mean-field model develops “folds” under increasing
network load which give rise to multiple stable equilibria. These
multiple equilibria can be interpreted as describing network’s
metastable states. By comparing simulation data with numerical
computations we show that mean-field approximation can be used
to predict equilibrium states of a realistic network. We construct a
sample phase diagram showing distribution of metastable regions
in the user load plane, derive a formula for the likelihood of
successful service completion for metastable states and discuss
performance characteristics of the network.

Index Terms—cellular network, performance, mean-field ap-
proximation, metastability.

I. I NTRODUCTION

Following [2] we consider a Markov model of a cellular
CDMA network with multiple user service classes. The model
is applicable not only to cellular networks but to any network
with multiple service classes, and migrating users. Ubiquity of
such networks makes their optimal design and control a topic
of great interest.

In [2] it was proved that for certain parameter values the
Markov model exhibits metastability as the number of cells
in the network approaches infinity. Simulations performed in
[1] confirmed that metastability can appear in realistic models
of CDMA networks with two service classes and as few as
49 cells. Understanding which network parameters contribute
strongly to metastability and how metastable states dependon
these parameters may help in operation and design of complex
service networks such as CDMA cellular networks.

Metastability is strong heterogeneity in the distributionof
mass of the stationary probability distribution. If the stationary
distribution is concentrated on a few relatively small disjoint
subsets of the phase space a realization of the Markov process
will be found most of the time in one of the states contained
within the heavily weighted subsets, with the rest of the phase
space visited only occasionally. This means that the Markov

process can be approximated by another Markov process
with a smaller phase space, whose states correspond to the
above subsets and are the metastable states of the original
Markov process. In practice, this means that the time series
of the system with metastable states exhibits long periods
of apparently steady state behavior with rapid transitionsin
between. Furthermore, due to asymmetry in the probability
mass distribution between the metastable states, the time spent
in the most likely state is exponentially long compared to the
time spent in other metastable states.

We build on the results of [1] by using the mean-field
approximation (already developed in [2]) and computer simu-
lations to begin piecing together the structure of the model’s
phase space with regard to metastability and the implications
of metastability for the network’s performance. By using
numerical computations we construct a generic phase space
diagram for the mean-field approximation model. The ad-
vantage of the phase diagram is that it allows to see at a
glance how parameter regions corresponding to metastable
regimes are distributed in the parameter space and are related
to the parameters of the network. It also provides a kind of a
“topographic” map which the network operator can use to steer
the network in to the desirable state or away from undesirable
states. Mean-field approximation also permits computationof
the metastable states with considerable precision, which makes
estimation of the quality of service possible for metastable
states. We derive a general formula for quality of service
and give a simple expression for it in the special case of
the homogeneous network traffic. All this suggests that with
sufficient understanding of metastability and an appropriate
admission control policy, capable of stabilizing metastable
states, metastable states may be practical in network operation.

The paper is organized as follows. Section II describes the
performance model and analysis. We briefly introduce the
“microscopic” Markov model and the corresponding mean-
field approximation broadly following [2], and derive an
expression for quality of service. Section III presents results on
the structure of the phase diagram and data from simulations
testing the predictions of the mean-field approximation. Sec-
tion IV is devoted to performance analysis in terms of quality
of service. We conclude with the summary of our findings and
directions for future research in Section V.



II. N ETWORK PERFORMANCE MODEL

In Subsection II-A we briefly introduce the Markov model
proposed in [2]. Our model differs somewhat from the original
in that the network parameters are permitted to vary across
cells and migration occurs only between adjacent cells. In Sub-
section II-B we derive the corresponding mean-field approx-
imation and the fixed-point equations for the homogeneous
network case.

A. Markov Model

Consider a network with a set of cells, representing cell
towers, J and S service classes with varying resource de-
mands. The service classes correspond to users using different
services e.g. voice and video [1]. Cellj ∈ J has capacity
Cj , while each user of service classs = 1, . . . , S requires
capacity bs and has an exponentially distributed “lifespan”
(call duration) τs, with averageτ̄s = 1/µs. Numbers of
users at all cells of the network are described by a vector
X = (Xsj , s = 1, . . . , S, j = 1, . . . , J), where Xsj is the
number of users of service classs at thejth cell. The feasible
region for vectorX is given by

X =

{

X :

S
∑

s=1

bsXsj ≤ Cj , j = 1, . . . , J

}

(1)

This assumption describes Frequency Division Multiple Ac-
cess (FDMA) network. In the case of Code Division Multiple
Access (CDMA) assumption (1) can be justified if inter-cell
interference is small.

We assume that new users of classs = 1, . . . , S originate at
the cellj ∈ J according to a Poisson process of rateλsj . Each
user in the network performs a random walk over the set of
cells J . The random walk is described by a Markov process
ξs(t) with a set of statesJ , continuous time and transition
rates between adjacent network cellsi, j ∈ J , i 6= j equal to
γsij . For consistency we setγsii = 0 andγsij = 0, if i andj
are not adjacent in the network. If an arriving user takes the
cell out of the feasible region he is ejected from the network.

Time evolution of the network state vectorX is described
by a Markov process with state spaceX . Under the above
assumptions evolution of the vectorX(t) = (Xsl(t)) is a
time-homogeneous Markov process with a finite number of
states |X |. The resulting process is ergodic provided that
arrival, migration and service rates are non-zero and hence
possesses a unique invariant probability distributionP (X) =
limt→∞ P (t,X), which is uniquely determined by the steady-

state Kolmogorov equations:

P (X)
∑

j∈J

(

λsj +
∑

s∈S

Xsj (µs + Γsj)

)

=
∑

j∈J

∑

s∈S

P (X − 1sj)λsj (2)

+
∑

j∈J

∑

s∈S

P (X + 1sj)(Xsj + 1)

(

µs +
∑

i

γ̌sji(X)

)

+
∑

j∈J

∑

i

∑

s∈S

P (X + 1sj − 1si)(Xsj + 1)γ̂sji(X − 1si)

supplemented with normalization condition
∑

X P (X) = 1.

In (2) the vector1si = (δshδij : h ∈ S, j ∈ J), whereδij

is the Kronecker symbolδij = 1 if i = j and 0 otherwise and

γ̌sji(X) =

{

γsji if X + 1si − 1sj /∈ X
0 otherwise

γ̂sji(X) =

{

γsji if X + 1si − 1sj ∈ X
0 otherwise

Γsj =
∑

i

γsji

We point out several obvious reductions of the above model

• If γsij = 0 the network consists ofJ independent queues
and the equilibrium probability distribution is aJ-fold
product of the probability distribution for a finite capacity
multi-service queue.

• If cell capacity is infinite the entire network acts as a
single infinite server queue since no user is ever rejected.

B. Mean-Field Model

The Markov model gives a full cell-by-cell description
of the network dynamics but the number of equations is
too large to compute the stationary distribution even for
a relatively small network, due to the exponential growth
of the state space with the number of cellsJ . The mean-
field approximation provides a more tractable description of
the equilibrium distribution. In mean-field approximationthe
influence of thespecific state of the network on a given
cell is replaced by the influence of theaveragednetwork
state with respect to a hypothesised equilibrium probability
distribution. The probability distributions of individual cells
are further assumed to be independent and the stationary
probability distribution for the network takes on a productform
P =

∏

j∈J Pj(Xj , X̄−j),where Xj = (Xsj , s = 1, . . . , S)
is the vector describing the number of users of each class
present at the cellj ∈ J andX̄−j is the expected state of the
network without thej-th cell with respect toP . In passing to
the mean-field approximation we are making an assumption
that the system can be approximated in this way, which we



confirm later with simulations.

Pj(Xj , X̄−j)
∑

s∈S

(

λsj + Λ̄sj(X) + Xsj (µs + Γsj)
)

=

∑

s∈S

Pj(Xj + 1s)(Xsj + 1) (µs + Γsj) (3)

+
∑

s∈S

Pj(Xj − 1s)
(

λsj + Λ̄sj(X)
)

whereΛ̄sj(X) = E[Xsiγsij ]
The number of equations is now proportional to the number

of cellsJ in the network but the equations are nonlinear and so
impossible to solve explicitly. Non-linearity of the mean-field
equations permits multiple solutions, or multiple equilibrium
probability distributions. This, however, does not contradict the
ergodicity of the original Markov model, rather it indicates
that the stationary distribution for the full Markov model is
a combination of equilibrium distributions of the mean-field
approximation.

AssumingPj = Q are all identical, as might be expected for
a homogeneous network, we can write down justS equations
for X̄s, the expected number of users of classs per cell.

X̄s = EQ[Xs] (4)

where EQ[] is expectation with respect to the equilibrium
probability distributionQ = QX̄ . The later can be computed
explicitly as the equilibrium distribution for a single multi-
service class finite capacity queue because of its reversibility
[3]

QX̄s
(X) = Z(X̄s)

−1

∏

s ρs(X̄s)
Xs

∏

s Xs!

Z(X̄s) =
∑

X∈X

∏

s ρs(X̄s)
Xs

∏

s Xs!

whereρs are mean aggregate loads including intra- as well as
extra-cell arrivals

ρs(X̄s) =
λs + ΓsX̄s

µs + Γs

C. Quality of service

Performance of a service network can be quantified in a
number of different ways. The operator of the network is most
likely to be interested in maximizing the pay-off, which may
be reasonably expected to be a linear function of the average
number of users in the system

φ(ρ) =
∑

s∈S

∑

j∈J

X̄sj(ρ)ps

where ρ = {ρsj : s ∈ S, j ∈ J} and ps is the profit per
user of classs who is successfully serviced. For simplicity
we assume that incomplete service brings zero revenue. A
measure of performance which is likely to be of concern to
network’s customers, and so again, to its operator, is quality
of service, i.e. the likelihood of successful service completion,
Qsj .

We derive an expression for the likelihood of successful
service completion for thes-th service class userQsj in terms
of the blocking probabilitiesBsj , whereBsj stands for the
likelihood that thej-th cell will block an arriving user of the
corresponding class.Bsj can in turn be expressed in terms of
X̄sj , which can be computed numerically from the mean-field
equations (3),

Bsj = 1 − X̄sj/ρsj (5)

whereρsj = (λsj + Λ̄sj(X))/(µs + Γsj).
Let the probability of successful service completion for an

s-th service class user originating at thej-th cell be denoted
by Qsj then

Qsj =
∑

ω∈Ωj

P [call unblocked on ω]P [ω]

whereΩj is the collection of all paths through the network
based atj, ω = {j, j1, j2, j3, . . . , jk}, jl ∈ J . Because the
blocking probabilities of cells are independent (by mean-field
assumption) the probability of navigating a given path success-
fully is equal to the probability of success ink independent
trials with randomly distributed times. It can be shown that

Qsj =
∑

ω∈Ωj

∏|ω|
i=0

(1 − Bsωi
)
∏|ω|−1

i=0
γsωiωi+1

µ−1
s

∏|ω|
i=0

µs + Γsωi

(6)

In a homogeneous network, i.e. one in which all the rates
λsj and γsij are equal, the equation (6) simplifies further if
we assume in addition that equilibrium probability distribution
is also homogeneous. In this case theBsj = Bs and the
probability of successful completion is

Qs =
µs(1 − Bs)

µs + ΓsBs

.

The last formula can be rewritten in terms of the easily
computable average number of users per cellX̄s

Qs =
X̄s

λs/µs

, (7)

which is can be understood as the conservation law: the
average number of customers in the system is equal to the
load times the proportion of the customers serviced.Thus, in
the homogeneous case in equilibrium each cell behaves as an
isolated queue.

III. M ETASTABILITY

In this section we construct a phase diagram for the special
case of the homogeneous network with two service classes by
solving the mean-field equations (4) over a grid of parameter
values. Solutions of the mean-field equations yield exactly
the potential metastable equilibria of the network. Interpolat-
ing between the solutions on the grid yields a slice of the
equilibrium manifold of the system. That is, the manifold of
metastable equilibria parametrized by the network parameters
such as arrival, departure and migration rates, etc. Since the
network is homogeneous and the individual cell distributions
are assumed to be identical, an equilibrium (as well as any



other state) of the network is described by a pair of num-
bers corresponding to the expected number of users of each
service class per cell. The full equilibrium manifold thus has
dimension twice that of the parameter space which is hard to
visualize so instead we plot its projection on to one of the
service classes.

The parameters of the model can be roughly subdivided into
two groups — fixed and variable parameters. Fixed parameters
such as cell capacity, service class demands etc. describe
internal and relatively static properties of the network. On the
other hand, variable parameters, e.g. traffic load, vary over
time and can to some extent be regulated by the operator.
Since in practice network behavior under a shifting traffic
load is of most immediate concern, we choose the service
class loads as axes of the phase diagram, i.e. loads from
the two service classes as fractions of the total cell capacity,
ρ1 = λ1/µ1 × b1/C andρ2 = λ2/µ2 × b2/C.

Figure 1(a) and (b) shows the metastable equilibrium mani-
fold for the first service class. The reason two plots are needed
to describe this manifold is that it is not a single valued
function of the chosen parameters and so can take on multiple
values at a single point. Plot (a) correspond to the upper
boundary and plot (b) to the lower boundary of the convex
hull of this manifold.

In order to understand the structure of the equilibrium
manifold it is helpful to note that the equilibrium converges to
that of an infinite server queue in the limit ofλs/µs → 0. That
is, the network system has a unique equilibrium provided the
migration is slow relative to the lifespan of the users and/or
the load is close to zero.This is reflected by the single single-
valuedness of the equilibrium manifold (Fig. 1(a) and (b), note
that the origin is the far right bottom corner). As the load
on the system increases the equilibrium manifold develops a
fold. Under the vertical projection the fold covers every point
of the parameter space below thrice, yielding three possible
metastable equilibrium states for the same set of parameter
values. The upper and lower branches, plots (a) and (b) in
Figure 1 respectively, of the fold correspond to the metastable
equilibrium states and the middle branch (not shown) to the
unstable equilibrium state. The phase diagram in Figure 1 (c)
was obtained by averaging the two plots (a) and (b), which
colors the metastable regions in shades intermediate between
those of the neighboring phases. Boundaries of the folds under
projection (outlined in black) divide the parameter space into
regions with distinct equilibria or phases. Between these lines
(corresponding to regions below the folds) neighboring phases
coexist giving rise to metastability. For unusually high loads
folds can pile up on top of each other producing regions with
three or more metastable states.

Computer simulations of the7×7 cell network arranged in
a hexagonal lattice with periodic boundary conditions confirm
the qualitative and quantitative correctness of the mean-field
approximation. Figure 2 shows plots of the simulated average
numbers of users per cell at two points of the parameter space
— one non-metastable and one metastable. Figure 2(a) gives
the time series for a non-metastable (according to mean-field
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Fig. 1. (a) & (b) Convex hulls of the lower and upper branches respectively of
the equilibrium manifold for service class 1. (c) Phase diagram constructed
by projecting the equilibrium manifold by averaging. Regions with phase
coexistence are outlined in black.(C = 64, b1 = 1, b2 = 18, µ1 = 1,
µ2 = .5, γ1 = 64, γ2 = 1.)
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Fig. 2. Network parameters are as in Figure 1 (a)ρ1 = 0.5, ρ2 = 1.0
(b)ρ1 = 0.5, ρ2 = 1.35. The horizontal lines indicate equilibrium states
predicted by the mean-field approximation.

approximation) parameter vector. As expected the network
remained in the steady state predicted by the mean-field
approximation for the duration of the simulation. Figure 2(b)
shows the time series for a metastable (according to mean-
field approximation) parameter vector. Here the network spent
substantial amounts of time in the two metastable states,
predicted by the mean-field approximation, with rapid tran-
sitions between the two states typical of metastable systems.
While no substitute for a regular validation procedure, repeated
comparisons against simulation runs for different parameter
vectors yielded the same good agreement with the mean-field
approximation.

We note that analysis of simulation data also confirms the
correctness of formula (7). Figure 3 shows the fraction of the
users successfully serviced in a sliding 50 time unit window
and the mean-field predicted values of the service completion
probabilitiesQs.

IV. I MPLICATIONS OF METASTABILITY FOR PERFORMANCE

The operator can control the load of each service class on
the network through admission control. Resource reservation
method of admission control has been shown to be effective
in keeping the network out of the multi-phase regions in [1],

0 5000 10 000 15 000 20 000
t
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0.5
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Qs

Fig. 3. Mean-field predicted and simulated service completionprobability
Qs for network parameters as in Figure 1.(a) andρ1 = .5C, ρ2 = 1.5C

but it can also simultaneously be used to maximize revenue
by steering the network toward the maximum ofφ. The
time-dependent problem of revenue maximization is thus to
find ρ∗ = {ρ∗sj : s ∈ S, j ∈ J} solving the constrained
maximization problem

Maximize φ(r) (8)

Constraint : rsj ≤ ρsj ,
∑

s

rsj ≤ (1 + oj)Cj ∀ j ∈ J

whereρsj are the current traffic loads, andoj is the maximum
permitted overload margin for cellj.

Figure 4(a) shows the level sets ofφ for a spatially homo-
geneous network with two service classes, and withp1 = 1
and p2 = 20 (the network parameters are as in Figure 1).
Because, the equilibrium manifold is multivalued as a function
of ρ1 and ρ2, φ also takes multiple values in the regions
with coexisting phases. The figure thus contains two sets of
level curves corresponding to the upper and lower branches of
the equilibrium manifold, which coincide on the single phase
region. The next figure (Figure 4(b)) shows the restriction of
the graph ofφ to the lineρ1+ρ2 = 1.5, which is the boundary
of the constraint region ifρ1 andρ2 are greater than 1.5 and
oj = 0.5. From Figure 4(a) it is clear that the maximum of
the optimization problem (8) will be achieved along this line.

Notice that while the extremes in Figure 4(b), corresponding
to the exclusion of one or the other of the service classes,
are global maxima of the revenue function they may not
be acceptable, since they correspond to exceptionally poor
quality of service for the excluded service class. Recall that
by equation (7) likelihood of successful service is proportional
to the average number of service class users in the system.

One crucial observation that can be gleaned from Figure
4(b) is that some local solutions of the above optimization
problem may be “cliff hangers”, in the sense that they are
located close to the phase transition boundary, where a small
perturbation in the network state can precipitate a dramatic
drop in revenue. Since in practice the network state cannot be
perfectly controlled and small fluctuations are inevitable, the
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Fig. 4. (a) Level curves ofφ for p1 = 1 and p2 = 20 and network
parameters as in Figure 1 (Sawtooth edges are numerical artifacts). (b)
Restriction of the revenue manifold toρ1 + ρ2 = 1.5 with the x-axis
showing the fraction of class 1 users (the dotted portion indicates values
for the unstable equilibrium not observed in practice). Dashed graph shows
the convolution of the upper branch of the revenue manifold with a Gaussian
kernelg(x) = 1/

√

2πe−x2/2 simulating small deviations.

expected revenue of a “cliff hanger” state may be substantially
smaller than predicted by the simple minded model. A more
accurate picture of revenue may be given by convolving the
above graph with a Gaussian kernel, simulating small devi-
ations from the equilibrium. The maxima ofφ shift, relative
to the original graph, when small deviations are introduced
(dashed graph in Figure 4(b)).

For practical applications this means that stability margins
of revenue maximizing states must be considered carefully
when considering optimal control of such service networks.
Admission control may not be of much help in improving
stability margins significantly because transitions between
phases may occur due to a sudden mass exodus of users
from the system (perhaps through cell failure) just as well
as by a sudden surge of users into the system. Furthermore,
once the network enters a new phase it may be difficult to
return it to the previous one without at least a temporary
decrease in the quality of service. A careful analysis of revenue
loss due to system “resets”, following such unwanted phase

transitions, versus their likelihood must be carried out inorder
to determine the true revenue maximizing states.

V. CONCLUSION

We used the mean-field approximation to derive equations
for the metastable states of a large-scale loss network. Using
numerical solutions of these equations we constructed a phase
diagram for a homogeneous network with two service classes
and verified its correctness by running computer simulations
for representative parameter values. We observed that metasta-
bility arises through a folding of the equilibrium manifold
when the traffic load approaches network capacity; at higher
traffic loads the load-space is divided into regions with distinct
phases that overlap along wedge-shaped metastable regions.
Mean-field approximation was then used to derive a formula
describing likelihood of successful service and this too was
verified by computer simulations. Finally, we observe that
states maximizing a linear revenue function may have rather
small stability margins, leading to decreased profits due to
undesirable phase transitions caused by inevitable chance
fluctuations in the network state.

Metastability could potentially be harnessed and put to good
use if a reliable way to compute stability margins of the
metastable equilibria is discovered. Call admission control
could then be used to maintain the network in a desirable
metastable state whose quality of service can be estimated
using equation (6). Further research is, also, necessary to
understand the relationship of inhomogeneity in user traffic
and network parameters, and of network topology to stability.
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