US010552300B2

a2 United States Patent

Kuhn et al.

US 10,552,300 B2
Feb. 4, 2020

(10) Patent No.:
45) Date of Patent:

(54) ORACLE-FREE MATCH TESTING OF A
PROGRAM USING COVERING ARRAYS
AND EQUIVALENCE CLASSES

(71)

(72)

(73)

")

@
(22)

(65)

(60)

(1)

(52)

(58)

Applicant:

Inventors:

Assignee:

Notice:

Appl. No.:

Filed:

US 2016/0299836 Al

NATIONAL INSTITUTE OF
STANDARDS AND TECHNOLOGY,
Gaithersburg, MD (US)

D. Richard Kuhn, Columbia, MD
(US); Raghu N. Kacker, North
Potomac, MD (US)

UNITED STATES OF AMERICA, AS
REPRESENTED BY THE
SECRETARY OF COMMERCE,
Gaithersburg, MD (US)

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 512 days.

15/019,448

Feb. 9, 2016

Prior Publication Data

Oct. 13, 2016

Related U.S. Application Data
Provisional application No. 62/144,187, filed on Apr.

7, 2015.
Int. C.

GO6F 11/36 (2006.01)

U.S. CL.

CPC ... GO6F 11/3676 (2013.01); GO6F 11/3692

(2013.01)

Field of Classification Search

CPC

GOGF 11/3676; GOGF 11/3692

See application file for complete search history.

134

Produce equivalence elasses

Produce primary covering array 136

138
Produce secondary covering arzay for each row,
in primary covering array

l 140

[ubject secondary covering array to program

Produce result vector

Produced resul®
vactor for eath
secondary

Determine whether equivalenee lasses

(56) References Cited

U.S. PATENT DOCUMENTS

5,142,681 A * 8/1992 Driscoll GOG6F 8/41

717/141

8,453,115 B2
2003/0208744 Al*

5/2013 Murray et al.
11/2003 Amir GOGF 11/3684

717/124

(Continued)

OTHER PUBLICATIONS

NIST, “An Introduction to Covering Arrays”,Apr. 17, 2008, NIST.
gov (Year: 2008).*

Primary Examiner — Wei Y Zhen

Assistant Examiner — Amir Soltanzadeh

(74) Attorney, Agent, or Firm — Office of Chief Counsel
for National Institute of Standards and Technology

(57) ABSTRACT

A process for testing a program includes: receiving a vari-
able comprising a plurality of input values; producing a
plurality of equivalence classes for the input values; pro-
ducing a representative value per equivalence class; produc-
ing, by a processor, a primary covering array comprising a
plurality of primary vectors; producing a secondary covering
array comprising a plurality of secondary vectors; providing
the secondary vectors to the program; and producing a result
vector comprising a plurality of result entries to test the
program. A computer system for testing the program
includes: a memory; and a processor, in communication with
the memory, wherein the computer system is configured to
perform the process for testing the program. A computer
program product for testing the program includes: a non-
transitory computer readable storage medium readable by a
processor and storing program code for execution by the
processor to perform the process.

20 Claims, 16 Drawing Sheets

132

Partition input values

were produced correctly

Correct
partitioning of
input values

Equivalence classes
produced correctly?

ng array

US 10,552,300 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
2008/0046791 Al* 2/2008 Bicheno GOGF 11/3688
714/742
2012/0167059 Al* 6/2012 Kosuda GOGF 11/3676
717/131

* cited by examiner

U.S. Patent Feb. 4, 2020 Sheet 1 of 16

100

US 10,552,300 B2

102

104 =

120

MEMORY
122

/

OPERATING
SYSTEM

2

112

PROCESSOR 106
COMPUTER
PROGRAM
1/0 NETWORK
CONTROLLER [~ 110 ADAPTER ~~— 108
INPUT DEVICE OUTPUT DEVICE STORAGE

{

114

FIG. 1

2

116

U.S. Patent Feb. 4, 2020 Sheet 2 of 16 US 10,552,300 B2

Start 3
124 (> > 126

A

|

Provide variable T~ 1928

:

Access input values ~I~— 130

134 132
N\ N A
A \ o .]
Produce equivalence classes < Partition input values N
A
Produce primary covering array -t~ 136
l 138
Produce secondary covering array for each row {/
in primary covering array
140
\
. ' . /
Subject secondary covering array to program |
A 4
—) Produce result vector
Ve 150
142 =
! Determine whether equivalence classes
Results entries were produced correctly
self-consistent?
Equivalence classes Correct
produced correctly? partitioning of
j input values
Produced result /
vector for each 158
secondary
covering array?
Error in program ~— 154
A\ 4
Perform error handling 1 156

U.S. Patent Feb. 4, 2020 Sheet 3 of 16 US 10,552,300 B2

P S A
{A,B,C,...,N, ..}

{ai, dy, ..., i, ..., An }

(b b oo Bie oo B}

wo
1 C1, C2 |

U.S. Patent Feb. 4, 2020 Sheet 4 of 16 US 10,552,300 B2

202 204 206 208 210

Vo)
(AL AZ ., A, ..., A

208 222 224 226 228

3 x &
{B, B2 ...,B), ..., B}

20

o

|

22

o

232 234

w oy
1 C1, C25

242 246 250 252

valy, alg, ..., ali, ..., alj§

244 9248

{3\21, a22, ooy a21, coos azk}

mo g] e {.
{a']]_, a‘]z, XXX aJ]._, N E) a‘]m}

282 9284 . 286 288
[

b d
{am1, ato, ..., a", ..., amq}

U.S. Patent Feb. 4, 2020 Sheet 5 of 16 US 10,552,300 B2

CD
CO
o
N
NeJ
=

296

U.S. Patent Feb. 4, 2020 Sheet 6 of 16 US 10,552,300 B2

358

wa, Y/
{/all;\l, aer}

368 370 372

SV / /
{ azrl, a2y2 , a4y3 }

374

Pt}

356\d 3'{ 378\ 35{ 3§<
1 b2:1, b2, b3, b2y §

FIG. 9

U.S. Patent

N
-]

N
-]

Feb. 4, 2020

Sheet 7 of 16

FIG. 10

FIG. 11

428

US 10,552,300 B2

N
'ﬁl\') 'ﬁr—l‘\
)) S

434

m,,]

«~

US 10,552,300 B2

Sheet 8 of 16

Feb. 4, 2020

U.S. Patent

i]

¢
1
{ 434

— e —— e e e - —— e ——— —— — — e — — — — — — — —

FIG. 12

US 10,552,300 B2

Sheet 9 of 16

Feb. 4, 2020

U.S. Patent

r— r— r— P
r{ r{ P i o pi ey o pf -

Rﬁ/ ... |
“ C C [A C C C ® 08 C . 00 C . 00 C _
mw ||| -
ST T T T T T T T T T T TTOS
m/"/VI i — N | N - < I
M M m M m /M M N

FIG. 13

U.S. Patent

Feb. 4, 2020 Sheet 10 of 16

450

454 456
NY¥

gl *

FIG. 14

4527 T~—x [Sll/ Slz

458

4607 [~~—¥ [Sy

s21 s29
480 482

v

SMo

FIG. 15

US 10,552,300 B2

452

458

460

US 10,552,300 B2

Sheet 11 of 16

Feb. 4, 2020

U.S. Patent

FIG. 16

422

421

656
l

C

C

FIG. 17

U.S. Patent

80

452

458

652

l 358

*[alé/l

366

*[ale./z

Feb. 4, 2020

654

l 376

b2

376

4
b2r1

378
/
b2r2

378

4
b2r2

380
/
b2r3

380

b2

382
/
b2r4

382

4
b2r4

Sheet 12 of 16

PRECEDING

= (e VECTOR;]
C i]
C .o 1]
C i]
C i]
C 1]
C]
C i]

SUBSEQUENT
*‘\/ SECONDARY VECTORS

FIG. 18

US 10,552,300 B2

U.S. Patent

500

504

502 j 506

Nyl

FIG. 19

516

506

502 514_\\‘
1l

) {524
r2q

’

508

e

510

{530
rmp

Feb. 4, 2020

518

{520
rls

{526
129

{ 532
rmo

FIG. 21

Sheet 13 of 16

US 10,552,300 B2

512

I‘l AT 502

rz A 508

4 510

FIG. 20

U.S. Patent Feb. 4, 2020

#include <stdio.h>
static int START = 0540;
static int END = 1020;
static int MON = 2;
static int FRI = 6;

int emp; // employee
mtd; //day, 1.7

mtt; // time, minutes
intp; // priv

int aud; // auditor

main(arge, argv)
int argc;

char *argvl];

{

Sheet 14 of 16

US 10,552,300 B2

if(arge < 6) {fprintf(stdout, "Error: Command line arguments are\n"); exit(1); }

emp = atoi(argv[1]);
d = atoi(argv[2]);
t = atoi(argvi3]);
p = atoi(argv[4]);
aud = atoi(argvl5]);

fprintf(stdout, "%d\n", access_chk();

h

int access_chk() {

if (emp && t >= START && t <= END &&

d >= MON && d <= FRD) return 1;

else
if (emp && p) return 2;
else

if (aud && d >= MON && d <= FRI)

return 3;
else
return (;

F1G. 22

U.S. Patent Feb. 4, 2020 Sheet 15 of 16 US 10,552,300 B2

1 Start }

Receive input values

y
Determine equivalence classes

for variables
Produce equivalence classes D1, D2, | g Partition ir}put, Val'ues for day and <
T1, T2, T3 N time variables

A

Produce primary covering array

A

Produce secondary covering array for each row
in primary covering array

Subject secondary covering
array to control system

v

— Produce result vector

Determine whether equivalence classes
were produced correctly

Results entries
self-consistent?

Correct
partitioning of
input values

Equivalence classes
produced correctly?

Produced result
vector for each
secondary
covering array?

Error in control system

A\ 4

Perform error handling

FIG. 23

U.S. Patent Feb. 4, 2020 Sheet 16 of 16 US 10,552,300 B2

COMPUTER
PROGRAM
PRODUCT

1300

PROGRAM
CODE LOGIC

COMPUTER
READABLE
STORAGE
MEDIUM
1302

k'/

FIG. 24

US 10,552,300 B2

1
ORACLE-FREE MATCH TESTING OF A
PROGRAM USING COVERING ARRAYS
AND EQUIVALENCE CLASSES

CROSS REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of U.S. Provisional
Patent Application Ser. No. 62/144,187, filed Apr. 7, 2015,
the disclosure of which is incorporated herein by reference
in its entirety.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH

This invention was made with United States Government
support from the National Institute of Standards and Tech-
nology. The Government has certain rights in the invention.

BRIEF DESCRIPTION

Disclosed is a process for testing a program, the process
comprising: receiving a variable comprising a plurality of
input values; producing a plurality of equivalence classes for
the input values; producing a representative value per
equivalence class; producing, by a processor, a primary
covering array comprising a plurality of primary vectors;
producing a secondary covering array comprising a plurality
of secondary vectors; providing the secondary vectors to the
program; and producing a result vector comprising a plu-
rality of result entries to test the program.

Further disclosed is a computer system for testing a
program, the computer system comprising: a memory; and
a processor, in communications with the memory, wherein
the computer system is configured to perform: receiving a
variable comprising a plurality of input values; producing a
plurality of equivalence classes for the input values; pro-
ducing a representative value per equivalence class; produc-
ing, by the processor, a primary covering array comprising
a plurality of primary vectors; producing a secondary cov-
ering array comprising a plurality of secondary vectors;
providing the secondary vectors to the program; and pro-
ducing a result vector comprising a plurality of result entries
to test the program.

Additionally disclosed is a computer program product for
testing a program, the computer program product compris-
ing: a non-transitory computer readable storage medium
readable by a processor and storing program code for
execution by the processor to perform a process comprising:
receiving a variable comprising a plurality of input values;
producing a plurality of equivalence classes for the input
values; producing a representative value per equivalence
class; producing, by the processor, a primary covering array
comprising a plurality of primary vectors; producing a
secondary covering array comprising a plurality of second-
ary vectors; providing the secondary vectors to the program;
and producing a result vector comprising a plurality of result
entries to test the program.

BRIEF DESCRIPTION OF THE DRAWINGS

The following descriptions should not be considered
limiting in any way. With reference to the accompanying
drawings, like elements are numbered alike.

FIG. 1 shows a data processing system;

FIG. 2 shows a flowchart;

FIG. 3 shows a plurality of variables;

15

20

25

30

35

40

45

65

2

4 shows a plurality of input values;
5 shows a plurality of equivalence classes;
6 shows a plurality of partitioned values;
7 shows a plurality of partitioned values;
8 shows a plurality of partitioned values;
9 shows a plurality of representatives values;
10 shows a primary covering array;
11 shows a primary covering array;
12 shows a primary covering array;
13 shows a primary covering array;
14 shows a secondary covering array;
15 shows a secondary covering array;
16 shows a secondary covering array;
17 shows a secondary covering array;
18 shows a secondary covering array;
19 shows plurality of result vectors;
20 shows a result array;
FIG. 21 shows a result array;
FIG. 22 shows a code for a control system according to
Example 1;
FIG. 23 shows a flowchart for testing a control system
according to Example 1; and
FIG. 24 shows a computer program product.

FIG.
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.

DETAILED DESCRIPTION

A detailed description of one or more embodiments is
presented herein by way of exemplification and not limita-
tion.

Ithas been discovered that a process herein tests computer
software or provides control of or a determination of a
parameter for physical articles (e.g., avoidance of collisions
between vehicles, control of exposure time on a camera,
position of a robot arm, velocity of a conveyor belt, and the
like). Advantageously, the process tests computer software
or a condition that includes a complex condition or a
decision in an environment such as process control, manu-
facturing, avionics, and the like. In a certain embodiment, a
process includes verifying equivalence classes for testing a
module or unit. Testing or equivalence class verification
includes, e.g., providing a two-layer covering array in which
a value of a primary covering array includes an equivalence
class. A secondary covering array of equivalence class
values is determined, and representative values of the
equivalence class are provided in the secondary array. The
process further includes detecting an error (as used herein,
an error is also called fault or bug in the program) in an
absence of a test oracle. In some embodiments, the process
includes verifying equivalence classes for testing the pro-
gram that includes using a two-layer covering array (e.g., the
primary covering array and the secondary covering array) in
which an entry of the primary covering array is an equiva-
lence classes. The secondary covering array is determined,
and a result vector is computed from the secondary covering
array, wherein result entries in the result vector are analyzed
for self-consistency to determine whether an error is present
in the program or equivalence classes. This determination is
accomplished done in absence of a test oracle.

As used herein, “equivalence class” refers to a set of input
of a variable value for which the program under test has the
same result.

Accordingly, in an absence of an error, a first represen-
tative value from an equivalence class and a second repre-
sentative value from the equivalence class produce an iden-
tical result from the program. If the result produced by the
program is different for the first representative value and that
for the second representative value, then an error is present

US 10,552,300 B2

3

wherein the input values of the variable were partitioned
incorrectly to produce the equivalence classes or the code of
the program includes the error.

In an embodiment, with reference to FIG. 1, data pro-
cessing system 100 incorporates and uses a process for
testing a program. Data processing system 100 can be based
on a computer architecture such as a server, workstation,
information appliance, embedded computer, minicomputer,
microcomputer, mainframe computer, supercomputer, net-
worked computer, laptop, tablet, smartphone, and the like.
Exemplary computer architecture include architectures
offered commercially (e.g., XSERIES or ISERIES by Inter-
national Business Machines Corporation (XSERIES AND
ISERIES are registered trademarks of International Business
Machines Corporation, Armonk, N.Y.), Intel Corporation’s
x86 architecture, and the like.

Data processing system 100 stores or executes the pro-
gram. As used herein, “program” includes executable code,
data, system configuration files, machine environment state
settings, or the like. Here, data processing system 100
includes processor 102 coupled (directly or indirectly) to
memory 104 through, e.g., system bus 120. In operation,
processor 102 receives from memory 104 an instruction for
execution by processor 102. Memory 104 can include local
memory employed during execution of the program, bulk
storage, or cache memory to provide temporary storage of
some program code to reduce a number of times code is
retrieved from bulk storage during program execution.
Exemplary types of memory 104 include a hard disk,
random access memory (RAM), read-only memory (ROM),
erasable programmable read-only memory (EPROM or flash
memory), optical fiber, portable compact disc read-only
memory (CD-ROM), optical storage device, magnetic stor-
age device, or a combination thereof. Memory 104 includes
operating system 122 and program 106.

According to an embodiment, input/output (I/O) devices
112, 114 (e.g., a keyboard, display, pointing device, and the
like) are coupled to date processing system 100 directly or
through I/O controller 110.

Network adapter 108 is included in data processing sys-
tem 100 to couple it to a second data processing system or
a remote printer or storage device through an intervening
private or public network. Exemplary network adapters 108
include a modem, cable modem, Ethernet card, and the like.

Data processing system 100 can be coupled to storage 116
(e.g., a non-volatile storage area such as a magnetic disk
drive, optical disk drive, tape drive, and the like) that
includes a database. Storage 116 can include an internal
storage device or an attached or network accessible storage.
A computer program in storage 116 can be loaded into
memory 104 and executed by processor 102.

Data processing system 100 can include fewer compo-
nents than shown in FIG. 1, additional components not
shown, or a combination of components shown and an
additional component. Data processing system 100 may
include a computing device known in the art, such as a
mainframe, server, personal computer, workstation, laptop,
handheld computer, telephony device, network appliance,
virtualization device, storage controller, and the like.

According to an embodiment, with reference to the flow-
chart shown in FIG. 2, data processing system 100 executes
program 106 as part of process 124 for testing program 106.
Here, process 124 starts (step 126) by receiving (e.g., by
processor 102 or memory 104) a variable (step 128) that
includes a plurality of input values, accessing the input
values (step 130) (e.g., by processor 102), partitioning the
input values (step 132), producing equivalence classes from

20

25

35

40

45

55

4

the partitioned input values (step 134), producing a primary
covering array (step 136) (that includes a primary vector
having a primary entry), producing a secondary covering
array (that includes a secondary vector having a secondary
entry) for each role in the primary covering array (step 138),
subjecting each secondary covering array to the program
106 (step 140), producing from program 106 a result vector
for each secondary covering array (step 142), and determin-
ing whether result entries in the result vector are self-
consistent (step 144).

If the result entries in the result vector are self-consistent
(at step 144), the process includes determining whether a
result vector was produced for each secondary covering
array (step 146). If a result vector was produced for every
secondary covering array (at step 146), then the process ends
(step 140). If a result vector (having a plurality of result
entries) was not produced for every secondary covering
array (at step 146), then the process reiterates to produce in
other result vector (step 142).

If the result entries in the result vector are not self-
consistent (at step 144), the process includes determining
whether equivalence classes were produced correctly (step
150). If equivalence classes were produced correctly (step
152), process 124 determines program 106 includes error in
code (step 154), and process 124 includes error handling
(step 156) such as producing an error flag, error message,
error alarm, and the like. If equivalence classes were not
produced correctly (step 152), process 124 includes correct-
ing partitioning of input values (step 158) and repartitioning
the input values (step 132) by applying a corrected parti-
tioning rule.

In an embodiment, the program is tested against input
values that are partitioned into the equivalence classes. In a
particular embodiment, representative values from each
equivalence class is provided to the program, and the output
the program is stored, e.g., in memory 104, as a result vector.
It is contemplated that the program can be executable code
(including units, modules, scripts, and the like), data, system
configuration files, machine environment state settings, and
the like. In a certain embodiment, the program is executable
program that receives the representative values as a substi-
tute for the input values of the variable, which is the
expected input by the program.

The program operates on the variable and is configured to
accept an input value of the variable. With reference to FIG.
3, a plurality of variables (160) includes, e.g., first variable
162, second variable 163, third variable 164, and the like,
such as arbitrary variable 166. Variables 160 are a data type
acceptable to the program. Exemplary data types include
integer, real numbers, floating point, Boolean, strings, char-
acters, data structures, and the like. Exemplary variables
include both discrete and continuous types, including inte-
gers, real numbers, floating points, and other defined data
types within the program.

The program accepts the input value of variable 160. As
shown in FIG. 4, first variable 162 includes a plurality of
input values 170 that includes first input value 172, second
input value 174, arbitrary input value 176, and final input
value 178. With regard to first input value 172 (shown as
“a,”), main member 171 is a lowercase letter indicating first
input value 172 corresponds to first variable 162 (shown as
“A” in FIG. 3), and subscript member 173 is a subscript that
indexes input values 170 (i.e., 172, 174, 176, 178, and the
like). It is contemplated that a data type of input values 170
is the same as the data type of variable 160 (particularly first
variable 162). Exemplary input values include both discrete

US 10,552,300 B2

5

and continuous types, including integers, reals, and other
defined data types within the program.

The number of input values is countable or uncountable.
The number of input values can be finite or infinite. In an
embodiment, second variable 163 includes a plurality of
input values 180 that includes first input value 182, second
input value 184, arbitrary input value 186, and final input
value 188. In some embodiments, third variable 164
includes a plurality of input values 190 (e.g., two input
values) that includes first input value 192 and second input
value 194.

Input Values (e.g., 170, 180, 190) of variables 160 are
partitioned into a plurality of partitioned input values (see
FIG. 6, FIG. 7, and FIG. 8) to provide equivalence classes
such as shown in FIG. 5. Here, input values 170 of first
variable 162 are partitioned into a plurality of equivalence
classes 200 that includes first equivalence class 202, second
equivalence class 206, arbitrary equivalence class 208, and
final equivalence class 210. With regard to first equivalence
class 202 (shown as “A'”), main member 203 is an upper-
case letter indicating first equivalence class 202 corresponds
to first variable 162 (shown as “A” in FIG. 3"), and super-
script member 204 is a superscript that indexes equivalence
classes 200 (i.e., 202, 206, 208, 210, and the like).

In an embodiment, second variable 163 is partitioned into
a plurality of equivalence classes 220 that includes first
equivalence class 222, second equivalence class 224, arbi-
trary equivalence class 226, and final equivalence class 228.
In some embodiments, third variable 164 is partitioned into
a plurality of equivalence classes 230 (e.g., two equivalence
classes) that includes first equivalence class 232 and second
equivalence class 234.

With reference to FIG. 6, FIG. 7, and FIG. 8, input values
of the variables are partitioned into partitioned values. Here,
as shown in FIG. 6, first input values 170 of first variable 162
are partitioned into a plurality of partitioned values (e.g.,
first partitioned values 240, second partitioned values 260,
arbitrary partitioned values 270, final partitioned values
280). First partitioned values 240 of first equivalence class
202 (ie., A") include partitioned members (242, 250, 252,
254), wherein first partitioned member 242 includes main
member 244 (representing equivalence classes 200), super-
script 246 (representing first equivalence class 202 (i.e.,
A'Y)), and subscript 248 (which indexes individual first
partitioned values 240). Second partitioned values 260 of
second equivalence class 206 include partitioned members
(262, 264, 266, 268). Arbitrary partitioned values 270 of
arbitrary equivalence class 208 (A”) include partitioned
members (272, 274, 276, 278), and final partitioned values
280 of final equivalence class 210 (A™) include partitioned
members (282, 284, 286, 288).

As shown in FIG. 7, input values 180 of second variable
163 are partitioned into a plurality of partitioned values (e.g.,
first partitioned values 290, second partitioned values 300,
arbitrary partitioned values 310, final partitioned values
320). First partitioned values 290 of equivalence class 222
(i.e., BY) include partitioned members (292, 293, 294, 296).
Second partitioned values 300 of equivalence class 224
include partitioned members (302, 304, 306, 308). Arbitrary
partitioned values 310 of arbitrary equivalence class 226
(B) include partitioned members (312, 314, 316, 318), and
final partitioned values 320 of final equivalence class 228
(B”) include partitioned members (322, 324, 326, 328).

It is contemplated that a number of partitioned values can
be any number such as greater than or equal to one. As
shown in FIG. 8, input values 190 of third variable 164 are
partitioned into a plurality of partitioned values (e.g., first

5

10

15

20

25

30

35

40

45

50

55

60

65

6

partitioned value 330, second partitioned values 340). First
partitioned value 330 of equivalence class 232 (i.e., C!)
includes partitioned member 332, and second partitioned
value 340 of equivalence class 234 includes partitioned
member 342.

In an embodiment, with reference to FIG. 9, representa-
tive values (e.g., 350, 352, 354, 356) for each equivalence
class is produced by the process for testing the program from
partitioned values (e.g., 240, 260, 270, 280, 290, 300, 310,
320, 330, 340). Here, plurality of first representative values
350 include representative values (358, 366), wherein (e.g.,
with regard to representative value 358) main member 360
and superscript 362 indicate that representative value 358
corresponds to first equivalence class 202 (i.e., A'), and
subscript 364 (i.e., “rl”) indexes individual representative
values in the set of first representative values 350. Similarly,
second representative values 352 include representative val-
ues (360, 370, 372). It will be appreciated that a number of
representatives values for an equivalence class can be any
number effective to test the program so that a set of
representatives values can include a single representative
value such as third set of representatives values 354 that
includes representative value 374 for equivalence class Bl
(222—see FIG. 5).

Representative values are used in secondary covering
arrays (produced from the primary covering array) that are
subjected to testing the program as an input into the program
in lieu of the input values (e.g., 170, shown in FIG. 4).

With reference to FIG. 10 and FIG. 11, primary covering
array 400 includes a plurality of primary vectors (402, 408,
410), which are indicated by member 404 (“p” for primary
vector) and superscript 406 (an index for each primary
vector). First primary vector 402 includes primary entries
(412, 420, 422), wherein first entry 412 is indicated by
member 414 and superscript 416 (indicating first entry 412
corresponds to first primary vector 402) and subscript 418 to
index primary entries (412, 420, 422). Similarly, second
primary vector 408 includes primary entries (424, 426, 428),
and final primary vector 410 includes primary entries (430,
432, 434). It will be appreciated that a number of primary
vectors in primary array 400 is selected based on the number
of different equivalence classes for a variable. In some
embodiments, the number of primary vectors in primary
array 400 is selected based on the number of combinations
of different equivalence classes for a plurality of variables
according to an embodiment. Primary entries (e.g., 412, 420,
422,424, 426, 428, 430, 432, 434, and the like) correspond
to an equivalence class or input value for each variable.

According to an embodiment, with reference to FIG. 12,
primary covering array 600 includes a plurality of primary
vectors (402, 408, 410), wherein primary entries (412, 424,
430) of primary vectors (402, 408, 410) correspond to
equivalence classes 200 for first variable 162. Further,
primary entries (420, 426, 432) include an input value (“b™)
for second variable 163 (“B”). Primary entries (421, 427,
433) include an input value (“c”) for third variable 164
(“C”). Final primary entries (422, 428, 434) include an input
value (“1”) for a final variable. As a result, each column of
primary covering array 400 corresponds to one of variables
160. Moreover, each primary entry for each primary vector
includes either a designation for an equivalence class or an
input value for the variable associated with the primary
entry. For primary covering array 600 shown in FIG. 12, first
column 602 includes primary entries (412, 424, 430) for first
equivalence classes 200 of first variable 162, and second
column 604 includes primary entries (420, 426, 432) that are
an identical input value for second variable 163. Accord-

US 10,552,300 B2

7

ingly, primary covering array 600 includes at least one
column (e.g., 602) corresponding to a plurality of equiva-
lence classes (e.g., first equivalence classes 200).

In some embodiments, as shown in FIG. 13, primary
covering array 606 includes a plurality of primary vectors
608 that includes a plurality of primary entries 610, that can
be grouped into a plurality of columns (e.g., 612, 614, 616).
Here, first column 612 includes primary entries 610 for
equivalence classes 200 for first variable 162, and primary
entries 610 for equivalence classes 224, second variable 163.
Third column 616 includes primary entries 610 that are an
input value for third variable 164.

According to an embodiment, primary covering arrays are
used to produce secondary covering arrays, wherein a sec-
ondary covering array is produced for each primary vector
in the primary covering array. With reference to FIG. 14 and
FIG. 15, secondary covering array 450 includes a plurality
of secondary vectors (452, 458, 460), which are indicated by
member 454 (“s” for secondary vector) and superscript 456
(an index for each secondary vector). First secondary vector
452 includes primary entries (462, 470, 472), wherein first
entry 462 is indicated by member 464 and superscript 466
(indicating first entry 462 corresponds to first secondary
vector 452) and subscript 468 to index secondary entries
(462, 470, 472). Similarly, second secondary vector 458
includes secondary entries (474, 476, 478), and final sec-
ondary vector 460 includes secondary entries (480, 482,
484). It will be appreciated that a number of secondary
vectors in secondary array 450 is selected based on the
number of different representative values for equivalence
classes of a variable.

According to an embodiment, with reference to FIG. 16,
secondary covering array 650 is produced from first primary
vector 402 of primary covering array 600 (e.g., see FIG. 12)
and includes first secondary vector 452 and second second-
ary vector 458 with representative values (358, 366) from
first equivalence class 202 as secondary entries (462, 474).
That is, first column 652 includes secondary entries (462,
474) for first equivalence class 202 (A") of first variable 162
populated by representative values (358, 366, e.g., see FIG.
9). Second column 654 includes input value 420 for second
variable 163, and third column 656 includes input value 421
for third variable 164. The final column of secondary
covering array 650 includes input value 422 for the final
variable.

With reference to FIG. 17, secondary covering array 660
is produced from second primary vector 408 of primary
covering array 600 (e.g., see FIG. 12) and includes first
secondary vector 452, second secondary vector 458, and
third secondary vector 460 with representative values (368,
370, 372) from equivalence class 204 as secondary entries
(462, 474, 480). That is, first column 652 includes secondary
entries (462, 474, 480) for equivalence class 206 (A?) of first
variable 162 populated by representative values (368, 370,
372, e.g., see FIG. 9). Second column 654 includes input
value 420 for second variable 163, and third column 656
includes input value 421 for third variable 164. The final
column of secondary covering array 660 includes input
value 422 for the final variable.

In some embodiments, with reference to FIG. 18, sec-
ondary covering array 680 includes a plurality of columns
(652, 654) that include representative values as secondary
entries. Here, secondary covering array 680 is produced
from primary covering array 608 shown in FIG. 13, wherein
representative values for first equivalence class 200 and
second equivalence classes 220 are included respectively in
first column 652 and 654. Although only limited number of

25

40

45

8

representative values (such as 358, 366, 376, 378, 380, 382)
is shown explicitly in secondary covering array 680, other
secondary vectors are indicated by vertical ellipses in FIG.
18

Secondary covering arrays are provided to the program to
test the program. A result vector is output from the program
in response to executing the program using the secondary
covering array as an input to the program. FIG. 19 shows a
plurality of result vectors 500 that includes first result vector
502, second result vector 508, and final result vector 510.
Member 504 is a lowercase letter “r” indicating first result
vector 502 is a result vector, and subscript 506 indexes result
vectors (502, 508, 510), which can be arranged as result
array 512 shown in FIG. 20. Moreover, with reference to
FIG. 21, first result vector 502 includes a plurality of result
entries (506, 520, 522). Individual result entries (e.g., result
entry 506) is an output of testing the program with a
secondary vector (having secondary entries). Moreover,
result entries (e.g., 506) include member 514 as a lowercase
letter “r” indicating result entry 506 is a result entry,
superscript 516 to indicate to which result vector result entry
506 corresponds, and subscript 518 to index result entries
(506 and the like). Here, first result vector 502 includes
result entries (506, 520, 522); second result vector 508
includes result entries (524, 526, 528); and final result vector
510 includes result entries (530, 532, 534). According to an
embodiment, result entries (e.g., 506, 520, 522) of a result
vector (e.g., first result vector 502) are checked to determine
whether result entries (506, 520, 522) are self-consistent,
i.e., are identical or within a range of agreement, so that a
presence of an error (e.g., in partitioning input values into
equivalence classes or in the program (e.g., a source code
bug) can be detected.

It should be appreciated, that each result entry is produced
as an output of the program using an entire secondary
covering array is input into the program. Therefore, produc-
ing a plurality of result entries in a result vector includes
providing a plurality of secondary covering arrays as input
into the program. Moreover, producing a plurality of result
vectors includes providing a plurality of secondary covering
arrays that correspond to a plurality of primary vectors in a
primary covering array.

Although vectors such as primary vectors have been
shown as rows in primary covering arrays, primary vectors
also can be arranged in columns. Moreover, secondary
vectors can be arranged as columns instead of rows in a
secondary covering array. A size (e.g., a number of rows or
columns) of vectors (e.g., result vector, primary vector,
secondary vector, and the like) is not limited. A size of arrays
(e.g., primary covering array, secondary covering array, and
the like) is not limited. In an embodiment, a size of the
primary covering array can be mxn, wherein m (number of
rows) and n (number of columns) are integers that are
greater than zero and can be different or the same as one
another. According to an embodiment, the size of the pri-
mary covering array can be given by the number of vari-
ables, equivalence classes, or combination thereof.

In an embodiment, a process for testing a program
includes receiving a variable including a plurality of input
values; producing a plurality of equivalence classes for the
input values; producing a representative value per equiva-
lence class; producing, by a processor, a primary covering
array including a plurality of primary vectors; producing a
secondary covering array including a plurality of secondary
vectors; providing the secondary vectors to the program; and
producing a result vector including a plurality of result
entries to test the program.

US 10,552,300 B2

9

The process further can include partitioning the input
values for the variable. In some embodiments, the process
includes determining whether the result entries of the result
vector are self-consistent, determining whether partitioning
the input values correctly produced the equivalence classes,
or a combination thereof.

In a particular embodiment, wherein partitioning the input
values correctly produced the equivalence classes, the pro-
cess further includes producing an error message related to
the program. According to an embodiment, the process
includes re-partitioning the input data and creating a plural-
ity of second equivalence classes that are different from the
equivalence classes and iterating previous steps to test the
program.

In a particular embodiment, wherein partitioning the input
values incorrectly produced the equivalence classes, the
process further includes producing an error message related
to the equivalence classes.

The process includes providing the secondary covering
array to the program; and producing, by the program, a result
array, which is based on the secondary covering array.

In an embodiment, the primary vector includes a primary
entry that includes the equivalence class. The primary cov-
ering array can include an n-way cover of the variable, based
on the equivalence classes in the primary entries, wherein n
is an integer from 1 to a total number of primary entries in
the primary vector. The secondary vector can include a
secondary entry that includes the representative value.
Moreover, the secondary covering array can include an
m-way cover of the primary vector, based on the represen-
tative values in the secondary entries, wherein m is an
integer from 1 to a total number of secondary entries in the
secondary vector. Here, the representative value is within a
domain of the equivalence class, wherein at least one
secondary covering array is produced per primary vector of
the primary covering array, and at least one result vector is
produced per secondary vector of the secondary covering
array.

It is contemplated that the process is performed in an
absence of a test oracle.

The variables received by the process can be passed to the
process as a set of input values, conditions on the input
values, an analytic expression for the input values, configu-
ration settings, header file variables, macro-defined vari-
ables, and the like. In an embodiment, the variables are
provided as names. It is contemplated that input values can
be produced in view of the variables or can be provided
explicitly. In some embodiments, all of input values are
provided to the process. In a particular embodiment, an input
value is absent from the input values but can be generated as
a representative value and included in the secondary cover-
ing array.

In an embodiment, partitioning the input values of the
variable includes establishing a break point at a condition
defined within the specification such as comparisons (e.g.,
greater than (>), less than (<), greater than or equal to (),
and the like) or set inclusion, or other condition within a
decision point in the specification.

In an embodiment, producing the equivalence classes for
the variable includes producing a smaller set of values that
are adequate to test the program using the primary covering
array and the second covering array. Producing the equiva-
lence classes includes dividing input values into partitions
that are meaningful for the program being tested (e.g., based
on a categorization, grouping, and the like). An input value
is selected for each partition. The input space of the variables
are partitioned such that any input value selected from the

20

25

40

45

55

10

partition to be a representative value in the secondary
covering array affects the program under test in the same
way as any other input value in the partitioned input values
that may be selected. Thus, if a test case contains a parameter
x that has value y, replacing y with any other value from the
partition will not affect the test case result. Equivalence
classes and their portioned input values can be labeled as
C, 1> Wherein i indexes variables, j indexes classes, and k
indexes values for variable C,, class j.

In an embodiment, selecting the representative value of
the equivalence class includes boundary value analysis, to
select test values at each boundary and at the smallest
possible unit on either side of the boundary, for three values
per boundary. Alternative methods of determining represen-
tative values are possible. It is not essential that three values
per boundary be used.

In an embodiment, producing the primary covering array
includes specitying factors and levels, wherein factors are
variables; and levels are input values for variables without
equivalence classes, and equivalence class designations C, ;
for variables with equivalence classes.

In an embodiment, producing the secondary covering
array includes: (for each row of the primary covering array)
computing a secondary covering array of the factors that are
variables with equivalence classes, where levels for each
factor C,; are the values C, , of that class. This also
includes, for each row in the secondary array, substituting its
values for the equivalence classes C,; in the row from the
primary covering array. If the primary covering array has M
rows, and each secondary covering array has N rows, then
a full test array with MxN rows can be created. If classes do
not all have the same number of values in each, secondary
covering arrays can vary in number of rows. In some
embodiments, equivalence classes have the same number of
values.

In an embodiment, producing the result vector includes
executing each of the tests in each secondary test array in
blocks of N tests, corresponding to the secondary covering
array generated for each row of the primary covering array.

According to an embodiment, determining whether the
result entries of the result vector are self-consistent includes
verifying that output for each of the N tests in a block
matches according to a predicate specified for the output.
Results can be defined and differentiated by some predicate,
which can be a single value or different value. A range of
values for the variable can be specified in a particular output
predicate.

In an embodiment, the result entries of the result vector
are self-consistent. Accordingly, the equivalence classes
corresponding to the secondary result vector subjected to
testing the program are produced correctly, and the program
is free of an error.

In an embodiment, the result entries of the result vector
are not self-consistent. Accordingly, an error is present for
producing the equivalence classes, in the program, or
accommodation thereof. Determining whether partitioning
the input values correctly produced the equivalence classes
includes comparing input values or consistency with predi-
cates that define equivalence classes. According to an
embodiment, partitioning the input values incorrectly pro-
duced the equivalence classes, and the process includes
producing an error message related to the equivalence
classes. Exemplary error messages related to the error in
producing the equivalence classes include indication that
values produced for the secondary covering array results
entries are not equivalent either as variable values or as
equivalence is defined by an equivalence predicate. It is

US 10,552,300 B2

11

contemplated that, in response to determining that the
equivalence classes were produced incorrectly, new equiva-
lence classes are established after review of the source code
or specification. According to an embodiment, partitioning
the input values correctly produced the equivalence classes,
and the process includes producing an error message related
to the program. Exemplary error messages related to the
error in the program include notification that results for
inputs from a given secondary array are not equivalent. It is
contemplated that, in response to determining that the pro-
gram includes the error, equivalence class definitions are
checked for correctness and if incorrect, are revised; and if
correct, then the program is checked for coding errors.

Errors in producing the equivalence class can include
wrong partitioning of the values, and the like.

Errors with the program can include incorrect coding or
incorrect logic that does not match the program specification
or an interaction fault that occurs when some values of one
combine with certain other values.

The process, computer system, and computer program
herein have numerous advantages and benefits. Comparing
the result of testing the program with representative values
in the secondary covering arrays can produce result vectors
that are an effective verification of the program. If result
entries are not self-consistent, equivalence classes have not
been defined correctly and can be re-produced before devel-
oping a unit test, or a coding error is discovered. Combina-
torial methods involved in the process provide efficient
testing of the program. The process provides a check on
correctness, detecting a significant class of faults, and can be
automated and suitable to incorporate into a development
environment. Checking result entries of the result vector for
self-consistency can be referred to as equivalence class
value match testing or simply match testing.

Additional beneficial properties of the process include test
automation, test cost reduction, reducing or eliminating need
for human insight in test definition, test oracle creation, or
test result review. One beneficial property is that the process
includes using a two-layer arrangement of covering arrays
that involves a primary covering array (as a first layer) and
a secondary covering array (as a second layer). Here, a
primary entry of a primary vector in the primary covering
array represents an equivalence class. The secondary cov-
ering array for equivalence classes in the primary covering
array are produced with representative values included as
secondary entries in secondary vectors. As a result, the
process detects a class of errors in an absence of a test oracle.
It is contemplated that the primary covering array is an
n-way cover of the variable, based on the equivalence
classes in the primary entries, wherein n is an integer from
1 to a total number of primary entries in the primary vector.
It is further contemplated that the secondary covering array
includes an m-way cover of the primary vector, based on the
representative values in the secondary entries, wherein m is
an integer from 1 to a total number of secondary entries in
the secondary vector. Moreover, the representative value is
within a domain of the equivalence class, wherein at least
one secondary covering array is produced per primary vector
of the primary covering array, and at least one result vector
is produced per secondary vector of the secondary covering
array.

Further, in testing the program with the primary covering
array and the secondary covering array, predicates are used
to define equivalent values for results where integer, real, or
other individual values are not returned. Exemplary predi-
cates include testing for set inclusion or exclusion, program
error condition returned or not returned, comparison of

15

20

25

30

40

45

12

complex data structure such as binary trees, linked lists, or
other structures. Although predicates can be used, the pro-
cess successfully tests the program when a faulty predicate
maps elements of a single equivalence class to a plurality of
different result entries. Source code for the program can be
provided, but the process can be used in an absence of the
source code when specifications are provided such that
identification of equivalence classes can be accomplished. In
an embodiment, the process is applied to testing a system. In
a certain embodiment, the process is used for testing a unit
of a larger system. Advantageously, testing a unit involves
more rigorously defined equivalence classes as compared to
larger systems.

Beneficially, a time or cost of testing the program using
the primary covering array and the secondary covering is
efficient because an oracle is not used. In some embodi-
ments, an oracle can be provided or produced and incorpo-
rated in testing the program. Conventional testing using a
single covering array would require producing a test oracle.

The process has numerous uses, including testing com-
puter software or a condition that includes a complex
condition or decision in an environment such as process
control, avionics, consumer electronics, and the like. In a
certain embodiment, the process includes verifying equiva-
lence classes for testing a module or unit. The process can
be included in computer system, computer program product,
and the like.

In an embodiment, a computer system for testing a
program includes: a memory; and a processor, in commu-
nications with the memory, wherein the computer system is
configured to perform: receiving a variable including a
plurality of input values; producing a plurality of equiva-
lence classes for the input values; producing a representative
value per equivalence class; producing, by the processor, a
primary covering array, including a plurality of primary
vectors; producing a secondary covering array, including a
plurality of secondary vectors; providing the secondary
vectors to the program; and producing a result vector
including a plurality of result entries to test the program.

According to an embodiment, a computer program prod-
uct for testing a program includes: a non-transitory computer
readable storage medium readable by a processor and stor-
ing program code for execution by the processor to perform
a process including: receiving a variable including a plural-
ity of input values; producing a plurality of equivalence
classes for the input values; producing a representative value
for the per equivalence classes; producing, by the processor,
a primary covering array, including a plurality of primary
vectors; producing a secondary covering array, including a
plurality of secondary vectors; providing the secondary
vectors to the program; and producing a result vector
including a plurality of result entries to test the program.

The articles and processes herein are illustrated further by
the following Examples, which are non-limiting.

EXAMPLES

Example 1. Testing a Control System for a
Building Lock

In this Example, a door on a building provides physical
access to the building. The door includes a lock controlled
by a control system. The control system unlocks the lock and
provides a user access to the building based on a number of
variables that are used to establish rules to determine if the
user can have access to the building.

US 10,552,300 B2

13

Accordingly, variables for the control system include:
whether the user is an employee (“emp,” a Boolean type
with input values {0, 1}); day of week (“day,” an integer
type with input values from 1 to 7, wherein each day of the
week is assigned an integer starting with Sunday being
assigned an integer value of 1, Monday an integer value of
2, ..., Saturday an integer value of 7); time of day (“time,”
an integer type having input values from 0 to 1439, which
is an integer number of minutes after midnight (rounded to
the nearest minute); whether the user has a special privilege
(“priv,” a Boolean type with input values {0, 1}); and
whether the user is an auditor (“aud,” a Boolean type with
input values {0, 1}). Equivalence classes are produced for
certain variables, namely day and time. Representative val-
ues for each equivalence class are produced from the input
values for the variables day and time. The variables, equiva-
lence classes, and representative values are listed in Table 1.

10

15

14

input values. A primary covering array was produced with
pairwise coverage of the equivalence classes for the vari-
ables day and time as shown immediately below.

0 D2 T1
1 D1 T1
0 DI T2
1 T2
0 T3
1

T3

D2
D1
D2

_0 O = D
[R = =R

Secondary covering arrays were produced for each pri-
mary vector (row) of the primary covering array, wherein
used as secondary entries for the equivalence classes in the
secondary covering arrays. An exemplary secondary cover-

TABLE 1
Data Input Equivalence Partitioned Representative
Variable type values class values values
Emp Boolean 0,1 N/A N/A N/A
Day Integer 1...7 D1 1,7 1,7
D2 2,...,6 2,6
Time Integer 0...1439 T1 0,...,539 0, 539
T2 540,. .., 540, 1020
1020
T3 1021,..., 1021, 1439
1439
Priv Boolean 0, 1 N/A N/A N/A
Aud Boolean 0,1 N/A N/A N/A

With regard to the control system, access is permitted
(i.e., the lock is unlocked by the control system) to the user
by the control system if:

(1) the user is an employee;

the time of day is during working hours; and
the day of the week is a weekday;

(2) the user is an employee with administrative privileges;

or

(3) the user is an auditor; and

the day of the week is a weekday.

Partitioning of the input values of the variables to produce
equivalence classes can be accomplished using heuristics
commonly used in testing software. Using boundary values
of the input values as representative values for the equiva-
lence classes can be effective. Include mid-range values of
the partitioned values for representative values in the
equivalence classes can be useful if the equivalence class
represents a continuous-valued variable or and ordered set of
input values. If the partitioned values of input values of the
equivalence class are an unordered set, representative values
of the equivalence class to be used to test the control system
can be selected at random or according to an application-
specific heuristic, such as the operational profile of the
control system.

Exemplary source code for the control system is shown in
FIG. 22. The process for testing the control system using a
primary covering array and secondary covering array is
shown in FIG. 23. Errors in the code for the control system
are introduced into versions of the control system by chang-
ing relational operators in function access_chk() shown in
FIG. 22.

The input values for the variables are partitioned into
partitioned values as shown in Table 1 and equivalence
classes are produced based on the partitioned values of the

40

45

50

55

60

65

ing array to implement pairwise tests for the first primary
vector (top row: [0, D2, T1, 0, 0]) of the primary covering
array is shown immediately below.

539

o o o O
—_ = =
—_ = =

With reference to FIG. 22, different results for function
access_chk() of the code of the control system have a result
value of 1, 2, and 3. Here, each row of the secondary
covering array will produce a result entry in a result vector
is at output from testing the control system. As noted above,
in reality results would be defined and differentiated by some
predicate, not necessarily a single possible value. For
instance, in the control system, decision 3 might be recog-
nized by system effects such as the appearance of an auditor
role in the system log file. It is also possible that a range of
input values for more than one variable can be specified in
a particular output predicate.

If equivalence classes were produced correctly, and no
error is present in the code, then result entries in a result
vector for a secondary covering array should be the same (as
defined by some predicate). For the code of the control
system shown in FIG. 22, result vectors are shown in the
result array immediately below, wherein each row is a result
vector corresponding to a secondary covering array, which
was produced per row for the primary covering array.

US 10,552,300 B2

15

RO e O O W
RO e O O W
RO e O O W
RO e O O W

That is, each row corresponds to one row of the primary
covering array, and each result entry in a given row gives the
output from the program for one of the secondary array
tested by the control system and generated for the corre-
sponding primary array row. Here, for the code shown in
FIG. 22, all values are identical for a given row. Because the
equivalence classes have been defined correctly and the code
is correct, equivalent values produce the same results.

Tests were performed by using the same primary covering
arrays in secondary covering arrays on code for the control
system in which lines of the access_chk function were
altered to become incorrect, that is, error was introduced into
the code for the control system. In one test of the control
system having errors in its code, “t<=END” was replaced
with “t==END” in the code shown in FIG. 22 so that the
code included the error: “if (emp && t>=START &&
t==END && d>=MON && d<=FRI) return 1.” Subjecting
the secondary covering arrays to the control system with the
error produced the result array shown immediately below

RO WO O W
RO WO O W
RO e OO W
RO e OO W

wherein result entries in the fourth result vector shown in the
fourth row of the result array. Here, the representative values
of the equivalence classes for time no longer produced the
same result. In this manner, the process for testing the
control system detected an error in the code.

An additional set of 10 mutated programs were generated
with the fault detection results as shown in Table 2.

TABLE 2
Fault
Version Mutated Code detected
1 (emp && t > START && t <= END && d >= MON YES
&& d <= FRI)
2 (emp && t >= START && t == END && YES
d >= MON && d <= FRI)
3 (emp && t >= START && t <= END && YES
d >= MON && d < FRI)
4 (emp && t >= START && t <= END && d > MON YES
&& d <= FRI)
5 (aud && d >= MON && d < FRI) YES
6 (emp && t >= START |l t <= END && NO
d >= MON && d <= FRI)
7 (emp && t >= START && t <= END || NO
d >= MON && d <= FRI)
8 (emp && t >= START && t <= END || YES
d >= MON || d <= FRI)
9 (aud && d >= MON || d <= FR]) YES
10 (aud && d <= MON || d <= FR]) YES

10

15

20

25

30

35

40

45

50

55

60

65

16

Example 2. Testing a Program for Process Control
of a Camera

A camera system includes a camera, speed sensor, light
sensor, and other environment sensors and is integrated into
an environment such as a vehicle. A controller (e.g., an
integrated circuit) determines an aperture setting or shutter
speed of the camera based on input values of variables that
include, e.g., a current speed of the vehicle (“Vspeed™), a
lighting condition (“Light”), digital media sensitivity
(“Sens™) (such as film speed equivalent in ISO numbers),
and the like. Here, Vspeed can be reported in units of miles
per hour (mph), and input values for Vspeed can be mea-
sured in increments of 0.1 mph. Light can be reported in
units of lux, and input values for Light can be measured in
increments of 0.1 lux. Sens. can be reported in an ISO
equivalent as defined in international standard ISO 12232:
2006, which determines an equivalence between electronic
sensors and film speed.

Equivalence classes and representative values for the
input values of the variables (Vspeed, Light, Sens.) are
shown respectively in Table 3 for Vspeed, Table 4 for Light,
and Table 5 Sens.

TABLE 3
Equivalence class Representative values
(for Vspeed) (mph)
Vi 0,5, 10
V2 10.1, 30
V3 30.1, 45, 60
TABLE 4
Equivalence class Representative values
(for Light) (lux)
L1 0,01,3
12 3.1, 100
L3 100.1, 1000
14 1000.1, 50000

TABLE 5

Equivalence class Representative values

(for Sens.) (ISO equivalent)
S1 50, 100
S2 200, 400

In testing the camera control program, these equivalence
classes can be combined with other configuration options in
the camera system that can have a Boolean value, numerical
value, or another enumerated value. Here, additional vari-
ables can be included such as various options for settings on
the camera (e.g., resolution, number of pixels, and the like).
We denote these as a first option (Optl with Boolean input
values 0, 1), second option (Opt2 with Boolean input values
0, 1), and third option (Opt3 with numeric input values 0, 5,
10). Here, a primary covering array is produced using class
names for the equivalence classes that include V1, V2, V3
(for Vspeed); 1.2, L3, L4 (for Light); and S1, S2 (for Sens.)
as well as primary entries for Optl, Opt2, and Opt3.

The primary array includes primary entries (in primary
vectors) that can be grouped into columns for the variables
(Vspeed, Light, Sens, Optl, Opt2, Opt3), wherein equiva-

US 10,552,300 B2

17

lence class names are used as primary entries for Vspeed,
Light, and Sens, and input values are used for Optl, Opt2,
and Opt3.

An exemplary primary array is

Vi Ll S1 0 0 0
Vi 2 52 010

Vi Ll 2 015

The first row in the primary covering array is the first
primary vector (i.e., [V1, L1, S1, 0, 0, 0]). The first primary
vector is used to produce a secondary covering array that
includes representative values for the equivalence classes
(V1, L1, S1) shown in Table 3, Table 4, and Table 5.
Accordingly, a 2-way secondary covering array of second-
ary vectors that include representative values for V1, .1, and
S1 in the first three columns (and input values for Optl,
Opt2, and Opt3, respectively in the last three columns) is
shown immediately below.

0 0 100 0 0 O
0 01 50 000
0 3 100 0 0 0
5 0 50 000
5 01 100 0 0 0
5 3 50 000
10 0 100 0 O O
10 0.1 50 0 0 O
10 3 100 0 0 O

A secondary array is produced for each row of the primary
array.

The testing process includes comparing system response
for each of the nine rows of a secondary covering array;
checking that aperture setting responses are equivalent
within a secondary array, and shutter speed setting responses
are equivalent within a secondary array, as defined by
equivalence predicate or values, for all rows of a secondary
covering array; reporting differences; resolving differences
either by revising equivalence classes or identifying errors in
code or circuitry.

Example 3. Shipping Program Test

A program for shipping includes a module that determines
shipping cost based on variables that include distance d and
weight w. The input values for weight are partitioned into
equivalence classes, wherein packages that weigh less than
1 pound are in a first weight class (W1); packages that weigh
from 1 to 10 pounds are in a second weight class (W2), and
packages that weigh greater than 10 pounds are in a third
weight class (W3). The module includes a function f(d,w)
such that f(d, 0.2)=f(d, 0.9) for equal values of d. For
different equivalence classes of weight, f(d, 0.2) is different
from f(d, 5.0) because two different weight classes (W1 and
W2) are involved.

Tests are generated using the following program specifi-
cations:

(1) If the shipping distance is not more than 100 miles,

and the package weight is not more than five pounds,

10

[
<

30

35

40

45

50

55

60

65

18

then the cost is $5.00 if no packaging is required or
$10.00 if packaging is required,;

(2) If the shipping distance is not more than 100 miles,
and the package weight is more than five pounds, then
the cost is $15.00 if no packaging is required or $20.00
if packaging is required;

(3) If the shipping distance is more than 100 miles, and the
package weight is not more than five pounds, then the
cost is $25.00 if no packaging is required or $30.00 if
packaging is required; and

(4) If the shipping distance is more than 100 miles, and the
package weight is more than five pounds, then the cost
is $35.00 if no packaging is required or $40.00 if
packaging is required.

The primary covering array and secondary covering array
are produced based on factors for the two equivalence
classes and other variables as follows:

dist: (0,99, 100), (101,1000), (1001, 9999)—=classes Al,
A2, A3,

weight: (0, 5), (6, 8, 10)—classes B1, B2; and

pkg: boolean.

Factors and levels used to generate the primary covering
array are as follows:

dist (enum): Al, A2, A3

weight (enum): B1, B2

pkg (boolean): 0,1.

Pairwise coverage is obtained with the following array:

Al
Al
A2
A2
A3
A3

Bl
B2
Bl
B2
Bl
B2

[R N
- o - O o -

Secondary arrays are computed to implement pairwise
tests for each row of the primary array, using covering arrays
of the classes included in each row. Thus, the first row uses
the following factors and levels to generate a covering array:

Al (enum): (0, 99, 100); and

B1 (enum): (0, 5).

The covering array is combined with any constants from
the primary array for each line. Thus, the first line of the
primary covering array is expanded to the secondary cov-
ering array shown immediately below.

0 01
0 51
99 0 1
99 51
100 0 1
100 5 1

Result Vectors are produced. If equivalence classes have
been defined correctly, and there are no errors in the code,
then results should be the same (as defined by some predi-
cate) for each set of tests in the secondary array generated
from one row of the primary array. Thus for the correct code,
results are as follows for the secondary array above: [10 10
10 10 10 10].

The process is repeated for each row of the primary array,
producing one result vector for each row of the primary

US 10,552,300 B2

19

array, containing one result value or structure for each row
of the secondary array. Result vectors may contain values,
data structures, or other program-produced objects.

Each row corresponds to one row of the primary covering
array, and each column gives the result for one of the
secondary array tests generated for the corresponding pri-
mary array row. All values are equivalent for columns of a
given row, indicating that no error has been detected. If all
values or structures in the result vector were not equivalent,
then either the equivalence classes have not been defined
correctly or there is an error in the code. The equivalence
classes can be reviewed against the specification. If the
equivalence classes were incorrectly defined, the classes are
changed, and the primary and secondary array generation
process repeated, followed by testing using the new arrays.
If the classes were correctly defined, then the code can be
inspected for errors.

Example 4. Testing Module for Traffic Collision
Avoidance System (TCAS)

A module for a TCAS used in air traffic control systems
is tested. The TCAS module code includes a set of 41
versions with seeded faults. Two-thirds of the faults are
changes that include replacing a constant with another
constant, replacing a conditional (e.g., “>=") with another
conditional (e.g., “>"), or dropping a condition. The TCAS
module has 12 variables that receive input values that
specify parameters of two aircraft. The variables include
speed, position, and an output variable. The process includes
testing the module against the set of faulty versions to detect
the faults.

Equivalence classes were produced for three of the vari-
ables and two separate sets of primary covering arrays with
corresponding secondary covering arrays were produced
that provided two-layer test covering arrays in 3-wayx3-way
and 4-wayx3-way configuration. The number of tests and
results are shown in Table 6.

TABLE 6
Primary x Number of Total number Number of faults
secondary tests tests detected
3-way x 3-way 285 x 8 2280 6
4-way x 3-way 970 x 8 7760 22

Although a large set of tests can be used, no test oracle is
used in the process for testing for the module. Once equiva-
lence classes have been defined, tests can be run in parallel
if desired. Results are encouraging, as more than half of the
41 faults were detected with the second configuration.
Because match testing can be fully automated, these faults
could be detected without human effort required to develop
test oracles.

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in
one or more computer readable medium(s) having computer
readable program code embodied thereon.

20

25

40

45

55

20

Any combination of one or more computer readable
medium(s) may be utilized. The computer readable medium
may be a computer readable storage medium. A computer
readable storage medium may be, for example, but not
limited to, an electronic, magnetic, optical, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive
list) of the computer readable storage medium include the
following: an electrical connection having one or more
wires, a portable computer diskette, a hard disk, a random
access memory (RAM), a read-only memory (ROM), an
erasable programmable read-only memory (EPROM or
Flash memory), an optical fiber, a portable compact disc
read-only memory (CD-ROM), an optical storage device, a
magnetic storage device, or any suitable combination of the
foregoing. In the context of this document, a computer
readable storage medium may be any tangible medium that
can contain or store a program for use by or in connection
with an instruction execution system, apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, includ-
ing but not limited to wireless, wireline, optical fiber cable,
RF, etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any
combination of one or more programming languages,
including an object oriented programming language such as
Java, Smalltalk, C++ or the like and conventional procedural
programming languages, such as the “C” programming
language or similar programming languages. The program
code may execute entirely on the user’s computer, partly on
the user’s computer, as a stand-alone software package,
partly on the user’s computer and partly on a remote
computer or entirely on the remote computer or server. In the
latter scenario, the remote computer may be connected to the
user’s computer through any type of network, including a
local area network (LAN) or a wide area network (WAN), or
the connection may be made to an external computer (for
example, through the Internet using an Internet Service
Provider).

Referring now to FIG. 24, in an embodiment, a computer
program product 1300 includes, e.g., a computer readable
media 1302 to store computer readable program code or
logic 1304 thereon to provide and facilitate one or more
embodiments herein.

Aspects of the present invention are described herein with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks in the
flowchart illustrations and/or block diagrams, can be imple-
mented by computer program instructions.

These computer program instructions may be provided to
a processor of a general purpose computer, special purpose
computer, or other programmable data processing apparatus
to produce a machine, such that the instructions, which
execute via the processor of the computer or other program-
mable data processing apparatus, create means for imple-
menting the functions/acts specified in the flowchart and/or
block diagram block or blocks.

These computer program instructions may also be stored
in a computer readable medium that can direct a computer,
other programmable data processing apparatus, or other
devices to function in a particular manner, such that the
instructions stored in the computer readable medium pro-
duce an article of manufacture including instructions which

US 10,552,300 B2

21

implement the function/act specified in the flowchart and/or
block diagram block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps
to be performed on the computer, other programmable
apparatus or other devices to produce a computer imple-
mented process such that the instructions which execute on
the computer or other programmable apparatus provide
processes for implementing the functions/acts specified in
the flowchart and/or block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of code, which comprises one or more executable
instructions for implementing the specified logical func-
tion(s). It should also be noted that, in some alternative
implementations, the functions noted in the block may occur
out of the order noted in the figures. For example, two blocks
shown in succession may, in fact, be executed substantially
concurrently, or the blocks may sometimes be executed in
the reverse order, depending upon the {functionality
involved. It will also be noted that each block of the block
diagrams and/or flowchart illustration, and combinations of
blocks in the block diagrams and/or flowchart illustration,
can be implemented by special purpose hardware-based
systems that perform the specified functions or acts, or
combinations of special purpose hardware and computer
instructions.

Further, a data processing system suitable for storing
and/or executing program code is usable that includes at
least one processor coupled directly or indirectly to memory
elements through a system bus. The memory elements
include, for instance, local memory employed during actual
execution of the program code, bulk storage, and cache
memory which provide temporary storage of at least some
program code in order to reduce the number of times code
must be retrieved from bulk storage during execution.

Input/Output or /O devices (including, but not limited to,
keyboards, displays, pointing devices, DASD, tape, CDs,
DVDs, thumb drives and other memory media, etc.) can be
coupled to the system either directly or through intervening
1/0O controllers. Network adapters may also be coupled to the
system to enable the data processing system to become
coupled to other data processing systems or remote printers
or storage devices through intervening private or public
networks. Modems, cable modems, and Ethernet cards are
just a few of the available types of network adapters.

While one or more embodiments have been shown and
described, modifications and substitutions may be made
thereto without departing from the spirit and scope of the
invention. Accordingly, it is to be understood that the present
invention has been described by way of illustrations and not
limitation. Embodiments herein can be used independently
or can be combined.

Reference throughout this specification to “one embodi-
ment,” “particular embodiment,” “certain embodiment,” “an
embodiment,” or the like means that a particular feature,
structure, or characteristic described in connection with the
embodiment is included in at least one embodiment. Thus,
appearances of these phrases (e.g., “in one embodiment” or
“in an embodiment”) throughout this specification are not
necessarily all referring to the same embodiment, but may.
Furthermore, particular features, structures, or characteris-

29 <

10

15

20

25

30

35

40

45

50

55

60

65

22

tics may be combined in any suitable manner, as would be
apparent to one of ordinary skill in the art from this
disclosure, in one or more embodiments.

All ranges disclosed herein are inclusive of the endpoints,
and the endpoints are independently combinable with each
other. The ranges are continuous and thus contain every
value and subset thereof in the range. Unless other-
wise stated or contextually inapplicable, all percentages,
when expressing a quantity, are weight percentages. The
suffix “(s)” as used herein is intended to include both the
singular and the plural of the term that it modifies, thereby
including at least one of that term (e.g., the colorant(s)
includes at least one colorants). “Optional” or “optionally”
means that the subsequently described event or circumstance
can or cannot occur, and that the description includes
instances where the event occurs and instances where it does
not. As used herein, “combination” is inclusive of blends,
mixtures, alloys, reaction products, and the like.

As used herein, “a combination thereof” refers to a
combination comprising at least one of the named constitu-
ents, components, compounds, or elements, optionally
together with one or more of the same class of constituents,
components, compounds, or elements.

All references are incorporated herein by reference.

The use of the terms “a” and “an” and “the” and similar
referents in the context of describing the invention (espe-
cially in the context of the following claims) are to be
construed to cover both the singular and the plural, unless
otherwise indicated herein or clearly contradicted by con-
text. “Or” means “and/or.” Further, the conjunction “or” is
used to link objects of a list or alternatives and is not
disjunctive; rather the elements can be used separately or
can be combined together under appropriate circumstances.
It should further be noted that the terms “first,” “second,”
“primary,” “secondary,” and the like herein do not denote
any order, quantity, or importance, but rather are used to
distinguish one element from another. The modifier “about”
used in connection with a quantity is inclusive of the stated
value and has the meaning dictated by the context (e.g., it
includes the degree of error associated with measurement of
the particular quantity).

What is claimed is:
1. A process for testing a program, the process compris-
ing:

receiving a variable comprising a plurality of input val-
ues; producing a plurality of equivalence classes for the
input values;

producing a representative value per equivalence class;

producing, by a processor, a primary covering array
comprising a plurality of primary vectors, the primary
covering array being an n-way cover of the variable and
based on the equivalence classes, wherein n is an
integer from 1 to a total number of entries in the
primary vector;

producing a secondary covering array comprising a plu-
rality of secondary vectors, the secondary covering
array being an m-way cover of the primary vectors,
based on the representative value, wherein m is an
integer from 1 to a total number of secondary entries in
the secondary vector;

providing the secondary vectors to the program; and

producing a result vector comprising a plurality of result
entries to test the program.

2. The process of claim 1, further comprising partitioning

the input values for the variable.

US 10,552,300 B2

23

3. The process of claim 2, further comprising determining
whether the result entries of the result vector are self-
consistent.

4. The process of claim 3, further comprising determining
whether partitioning the input values correctly produced the
equivalence classes.

5. The process of claim 4, wherein partitioning the input
values correctly produced the equivalence classes, and

the process further comprises producing an error message

related to the program.

6. The process of claim 4, wherein partitioning the input
values incorrectly produced the equivalence classes, and the
process further comprises producing an error message
related to the equivalence classes.

7. The process of claim 3, further comprising providing
the secondary covering array to the program.

8. The process of claim 7, further comprising producing,
by the program, a result array, which is based on the
secondary covering array.

9. The process of claim 1, wherein the primary vector
comprises a primary entry that comprises the equivalence
class.

10. The process of claim 9, wherein the primary covering
array comprises an n-way cover of the variable, based on the
equivalence classes in the primary entries,

wherein n is an integer from 1 to a total number of primary

entries in the primary vector.

11. The process of claim 10, wherein the secondary vector
comprises a secondary entry that comprises the representa-
tive value.

12. The process of claim 11, wherein the secondary
covering array comprises an m-way cover of the primary
vector, based on the representative values in the secondary
entries,

wherein m is an integer from 1 to a total number of

secondary entries in the secondary vector.

13. The process of claim 12, wherein the representative
value is within a domain of the equivalence class,

wherein at least one secondary covering array is produced

per primary vector of the primary covering array, and
wherein at least one result vector is produced per second-
ary vector of the secondary covering array.

14. The process of claim 13, wherein the process is
performed in an absence of a test oracle.

15. A computer system for testing a program, the com-
puter system comprising:

a memory; and

a processor, in communication with the memory,

wherein the computer system is configured to perform:

receiving a variable comprising a plurality of input
values;

producing a plurality of equivalence classes for the
input values;

producing a representative value per equivalence class;

10

15

20

25

30

35

40

45

50

24

producing, by the processor, a primary covering array
comprising a plurality of primary vectors, the pri-
mary covering array being an n-way cover of the
variable and based on the equivalence classes,
wherein n is an integer from 1 to a total number of
entries in the primary vector;

producing a secondary covering array comprising a
plurality of secondary vectors, the secondary cover-
ing array being an m-way cover of the primary
vectors, based on the representative value, wherein
m is an integer from 1 to a total number of secondary
entries in the secondary vector;

providing the secondary vectors to the program; and

producing a result vector comprising a plurality of
result entries to test the program.
16. The process of claim 15, further comprising deter-
mining whether the result entries of the result vector are
self-consistent.
17. The process of claim 15, further comprising deter-
mining whether partitioning the input values correctly pro-
duced the equivalence classes.
18. A computer program product for testing a program,
the computer program product comprising:
a non-transitory computer readable storage medium read-
able by a processor and storing program code for
execution by the processor to perform a process com-
prising:
receiving a variable comprising a plurality of input
values;

producing a plurality of equivalence classes for the
input values;

producing a representative value per equivalence class;

producing, by a processor, a primary covering array
comprising a plurality of primary vectors, the pri-
mary covering array being an n-way cover of the
variable and based on the equivalence classes,
wherein n is an integer from 1 to a total number of
entries in the primary vector;

producing a secondary covering array comprising a
plurality of secondary vectors, the secondary cover-
ing array being an m-way cover of the primary
vectors, based on the representative value, wherein
m is an integer from 1 to a total number of secondary
entries in the secondary vector;

providing the secondary vectors to the program; and

producing a result vector comprising a plurality of
result entries to test the program.

19. The process of claim 18, further comprising deter-
mining whether the result entries of the result vector are
self-consistent.

20. The process of claim 18, further comprising deter-
mining whether partitioning the input values correctly pro-
duced the equivalence classes.

#* #* #* #* #*

